Scanning Microscopy for Nanotechnology
Contributors

Robert Anderhalt
Ametek EDAX Inc.
91 McKee Drive,
Mahwah, NJ 07430

Anzalone, Paul
FEI
5350 NE Dawson Creek Drive
Hillsboro, OR
97124-5793

P. Robert Apkarian
Integrated Microscopy and
Microanalytical Facility
Department of Chemistry
Emory University
1521 Dickey Drive
Atlanta GA 30322

A. Borisevich
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Daniela Caruntu
Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148

Gabriel Caruntu
Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148

M.F. Chisholm
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Lesley Anglin Campbell
Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148

M. David Frey
Carl Zeiss SMT Inc.
1 Zeiss Drive
Thornwood, NY 10594

Pu Xian Ga
School of Materials Science and Engineering, Georgia Institute of Technology
Atlanta, GA 30332-0245

A. Lucille Giannuzzi
FEI
5350 NE Dawson Creek Drive
Hillsboro, OR
97124-5793

Rishi Gupta
Zyvex
1321 North Plano Road
Richardson, Texas 75081
Contributors

David Joy
University of Tennessee
Knoxville, TN 37996

Jianye Li
Department of Chemistry
Duke University
Durham, NC 27708-0354

Feng Li
Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148

Jie Liu
Department of Chemistry
Duke University
Durham, NC 27708-0354

Xiaohua Liu
Department of Biologic and Materials Sciences
Division of Prosthodontics
University of Michigan
1011 N. University
Ann Arbor, MI 48109-1078

A.R. Lupini
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Peter X. Ma
Department of Biologic and Materials Sciences
Division of Prosthodontics
University of Michigan
1011 N. University
Ann Arbor, MI 48109-1078

Tim Maitland
HKL Technology Inc
52A Federal Road, Unit 2D
Danbury, CT 06810

Joe Nabity
JC Nabity Lithography Systems
Bozeman, MT 59717

Charles J. O’Connor
Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148

M.P. Oxley
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Y. Peng
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Steve Pennycook
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Richard E. Stallcup II
Zyvex
1321 North Plano Road
Richardson, Texas 75081

Scott Sitzman
HKL Technology Inc
52A Federal Road, Unit 2D
Danbury, CT 06810

K. Van Benthem
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Brandon Van Leer
FEI
5350 NE Dawson Creek Drive
Hillsboro, OR
97124-5793
M. Varela
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

Peng Wang
Department of Biologic and Materials Sciences
Division of Prosthodontics
University of Michigan
1011 N. University
Ann Arbor, MI 48109-1078

Xudong Wang
Center for Nanoscience and Nanotechnology (CNN)
Georgia Institute of Technology
Materials Science and Engineering Department
771 Ferst Drive, N.W.
Atlanta, GA 30332-0245

Zhong Lin Wang
Center for Nanoscience and Nanotechnology
Georgia Institute of Technology
Materials Science and Engineering Department
771 Ferst Drive, N.W.
Atlanta, GA 30332-0245

Guobao Wei
Department of Biologic and Materials Sciences
Division of Prosthodontics
University of Michigan
1011 N. University
Ann Arbor, MI 48109-1078

John B. Wiley
Department of Chemistry and Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148

Weilie Zhou
Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148

Mo Zhu
Advanced Materials Research Institute
University of New Orleans
New Orleans, LA 70148
Preface

Advances in nanotechnology over the past decade have made scanning electron microscopy (SEM) an indispensable and powerful tool for analyzing and constructing new nanomaterials. Development of nanomaterials requires advanced techniques and skills to attain higher quality images, understand nanostructures, and improve synthesis strategies. A number of advancements in SEM such as field emission guns, electron back scatter detection (EBSD), and X-ray element mapping have improved nanomaterials analysis. In addition to materials characterization, SEM can be integrated with the latest technology to perform in-situ nanomaterial engineering and fabrication. Some examples of this integrated technology include nanomanipulation, electron beam nanolithography, and focused ion beam (FIB) techniques. Although these techniques are still being developed, they are widely applied in every aspect of nanomaterial research. Scanning Microscopy for Nanotechnology introduces some of the new advancements in SEM techniques and demonstrate their possible applications.

The first section covers basic theory, newly developed EBSD techniques, advanced X-ray analysis, low voltage imaging, environmental microscopy for biomaterials observation, e-beam nanolithography patterning, FIB nanostructure fabrication, and scanning transmission electron microscopy (STEM). These chapters contain practical examples of how these techniques are used to characterize and fabricate nanomaterials and nanostructures.

The second section discusses the applications of these SEM-based techniques, including nanowires and carbon nanotubes, photonic crystals and devices, nanoparticles and colloidal self-assembly, nano-building blocks fabricated through templates, one-dimensional wurtzite semiconducting nanostructures, bio-inspired nanomaterials, in-situ nanomanipulation, and cry-SEM stage in nanostructure research. These applications are widely used in fabricating and engineering new nanomaterials and nanostructures.

A unique feature of this book is that it is written by experts from leading research groups who specialize in the development of nanomaterials using these SEM-based techniques. Additional contributions are made by application specialists from several popular instrument vendors concerning their techniques to
characterize, engineer, and manipulate nanomaterials *in-situ* SEM. *Scanning Microscopy for Nanotechnology* should be a useful and practical guide for nanomaterial researchers as well as a valuable reference book for students and SEM specialists.

WEILIE ZHOU
ZHONG LIN WANG
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Low kV Scanning Electron Microscopy</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>M. David Frey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>2. Electron Generation and Accelerating Voltage</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>3. “Why Use Low kV?”</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>4. Using Low kV</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>5. Conclusion</td>
<td>119</td>
</tr>
<tr>
<td>5</td>
<td>E-beam Nanolithography Integrated with Scanning Electron Microscope</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Joe Nabity, Lesely Anglin Campbell, Mo Zhu, and Weilie Zhou</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>2. Materials and Processing Preparation</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>3. Pattern Generation</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>4. Pattern Processing</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>5. Applications</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>6. Summary</td>
<td>148</td>
</tr>
<tr>
<td>6</td>
<td>Scanning Transmission Electron Microscopy for Nanostructure Characterization</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>S. J. Pennycook, A. R. Lupini, M. Varela, A. Borisevich, Y. Peng, M. P. Oxley, K. Van Benthem, M. F. Chisholm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>2. Imaging in the STEM</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>3. Spectroscopic Imaging</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>4. Three-Dimensional Imaging</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>5. Recent Applications to Nanostructure Characterization</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>6. Future Directions</td>
<td>188</td>
</tr>
<tr>
<td>7</td>
<td>Introduction to In-Situ Nanomanipulation for Nanomaterials Engineering</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Rishi Gupta and Richard E. Stallcup, II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>2. SEM Contamination</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>3. Types of Nanomanipulators</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>4. End Effectors</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>5. Applications of Nanomanipulators</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>6. Summary</td>
<td>223</td>
</tr>
</tbody>
</table>
8. Applications of FIB and DualBeam for Nanofabrication ... 225
Brandon Van Leer, Lucille A. Giannuzzi, and Paul Anzalone
1. Introduction ... 225
2. Onboard Digital Patterning with the Ion Beam 226
3. FIB Milling or CVD Deposition with Bitmap Files 230
4. Onboard Digital Patterning with the Electron Beam 231
5. Automation for Nanometer Control 233
6. Direct Fabrication of Nanoscale Structures 234
7. Summary .. 234

9. Nanowires and Carbon Nanotubes 237
Jianye Li and Jie Liu
1. Introduction .. 237
2. III-V Compound Semiconductors Nanowires 237
3. II-VI Compound Semiconductors Nanowires 250
4. Elemental Nanowires .. 260
5. Carbon Nanotubes .. 267
6. Conclusions .. 278

10. Photonic Crystals and Devices ... 281
Xudong Wang and Zhong Lin Wang
1. Introduction .. 281
2. SEM Imaging of Photonic Crystals 289
3. Fabrication of Photonic Crystals in SEM 298
4. Summary .. 302

11. Nanoparticles and Colloidal Self-assembly 306
Gabriel Caruntu, Daniela Caruntu, and Charles J. O’Connor
1. Introduction .. 306
2. Metal Nanoparticles .. 307
3. Mesoporous and Nanoporous Metal Nanostructures 322
4. Nanocrystalline Oxide ... 329
5. Nanostructured Semiconductor and Thermoelectric Materials .. 347
6. Conclusions .. 353