

1. IDENTIFICAÇÃO

Professor(a):	Iury Valente de Bessa		Departamento:	Eletricidade		Unidade:	FT
Disciplina:	Circuitos Elétricos II				Código:	FTE-008	
Nº de créditos:	4	Carga Te	órica Semanal (h):	4	Carga Prática S	emanal (h):	0
Semestre:	2		Ano:	2015	Turma(s):	01	
Curso(s) para o(s) qual(is) está sendo o	oferecida	Engenharia Elétrica	a - Eletroto	écnica		

2. EMENTA

Acoplamento magnético e transformadores ideiais. Análise de Fourier: Série de Fourier e harmônicos, resposta de circuitos a entradas periódicas. Transformada de Fourier. Resposta a sinais não periódicos. Transformada de Laplace, Função de Transferência, solução de circuitos pela transformada de Laplace. Quadripolos. Filtros Elétricos.

3. OBJETIVOS

Ao final da disciplina o aluno deverá ser capaz de: compreender e aplicar os fundamentos da teoria de Fourier e de Laplace na análise de circuitos lineares no domínio da frequência para excitações de qualquer natureza; conceituar, classificar e caracterizar filtros analógicos; analisar circuitos elétricos lineares contendo quadripolos, associação de quadripolos e acoplamentos magnéticos por meio de indutâncias mútuas e/ou transformadores.

4. CRONOGRAMA

Horário

HORÁRIO	SEGUNDA	TERÇA	QUARTA	QUINTA	SEXTA	SÁBADO
08/09	Aula		Aula			
09/10	Aula	Atendimento	Aula	Atendimento	Atendimento	
10/11	Aula	Atendimento	Aula	Atendimento	Atendimento	
11/12	Atendimento	Atendimento	Atendimento	Atendimento	Atendimento	
14/15						
15/16						
16/17						
17/18						

Distribuição do conteúdo programático e das avaliações no semestre

Carga Horária	Avaliação	Conteúdo	
3h		Aula 0 – Apresentação do plano de ensino e revisão	
		Aula 1 – Frequência complexa	
		1.1. Representação de oscilações crescentes e decrescentes	
6h		1.2. Impedância e admitância	
		1.3. Polos e zeros	
		1.4. Vetores no plano s	
		1.5. Curvas de Resposta em Frequência	

Universidade Federal do Amazonas

Faculdade de Tecnologia <u>Plano de Ensino</u>

Aula 2 – Quadripolos 2.1. Bipolos e quadripolos			
1			
2.2. Os parâmetros e matrizes do quadripolo			
2.3. Quadripolos recíprocos e quadripolos simétricos			
2.4. Quadripolos não recíprocos			
2.5. Associação de quadripolos			
Aula 3 – Acoplamento magnético, transformadores e circuitos equivalentes			
3.1. Propriedades dos transformadores de dois enrolamentos			
3.2. Generalização para <i>m</i> bobinas acopladas			
9h 3.3. Impedâncias referidas	3.3. Impedâncias referidas		
3.4. Coeficiente de acoplamento	<u> </u>		
3.5. Circuitos equivalentes	<u>-</u>		
3.6. Transformadores de medida			
3h AV ₁ Conteúdo: Aulas 1, 2 e 3			
Data prevista:			
Aula 4 – A série e a integral de Fourier			
4.1. A série exponencial complexa de Fourier			
4.2. As formas trigonométricas da série de Fourier			
4.3. A representação e o espectro de sinais reais periódicos			
9h 4.4. Séries de Fourier truncadas e síntese de Fourier			
4.5. Relação de Parseval, valor eficaz e espectro de potência			
4.6. A resposta a entradas periódicas			
4.7. A transformada de Fourier			
4.8. A resposta a entradas não periódicas			
Aula 5 – Transformada de Laplace			
5.1. A transformada direta			
5.2. Propriedades			
5.3. Revisão de teoria da variável complexa			
9h 5.4. A integral de inversão	-		
5.5. A antitransformação de funções racionais			
5.6. A solução completa de circuitos			
5.6. O significado da transformada de Laplace			
Conteúdo: Aulas 1 2 3 4 a 5			
3h AV ₂ Data prevista:			
9h Aula 6 – Resposta em frequência e filtros analógicos			
6.1. Ressonância paralela			
6.2. Largura de banda e circuitos com Q alto			
6.3. Ressonância série			
6.4. Outras formas ressonantes			
6.5. Mudança de escala			
6.6. Diagramas de Bode			
6.7. Filtros passivos			

Universidade Federal do Amazonas

Faculdade de Tecnologia Plano de Ensino

		6.8. Filtros ativos
3h	AV_3	Conteúdos: Aulas 1, 2, 3, 4, 5 e 6 Data prevista:
-	PROVA FINAL	Conteúdos: Aulas 1, 2, 3, 4, 5 e 6 Data prevista:

5. METODOLOGIA

Aulas expositivas ministradas pelo professor. Ao término de cada um dos seis módulos serão passadas listas de exercícios sobre os mesmos. Além disso os alunos serão desafiados a desenvolver um projeto que poderá substituir a menor nota dos exercícios avaliativos e será oportuno para a verificação prática dos conceitos aprendidos teóricamente na disciplina.

6. RECURSOS DIDÁTICOS

Quadro branco, pincel e datashow.

7. AVALIAÇÃO

Os discentes serão avaliados por meio de 3 (três) provas escritas parciais, 6 (seis) listas de exercícios, 1 (um) projeto prático e 1 (uma) prova final. O projeto prático não será um componente obrigatório. Caso o aluno escolha desenvolver o projeto prático, a nota atribuída ao mesmo substituirá a menor nota entre as notas da prova parcial.

Sendo assim, a média dos exercícios escolares será computada por:

$$M_{EE} = \frac{9 \cdot \sum_{i=1}^{3} AV_i + \sum_{j=1}^{6} EX_j}{33}$$

Finalmente, a média final será computada segundo a Resolução nº 21/1985-CONSEP:

$$M_F = \frac{2 \cdot M_{EE} + P_F}{3}$$

Legenda:

 AV_i : nota da i-ésima avaliação EX_j : nota da j-ésima lista de execícios $M_{\rm EE}$: média dos exercícios escolares

P_F: nota da prova final M_F: média final

8. REFERÊNCIAS

- ORSINI, Luiz de Queiroz; CONSONNI, Denise. **Curso de circuitos elétricos:** volume 1. 2. ed. São Paulo: Edgard Blücher, 2002. 286 p. ISBN 85-212-0308-X.
- HAYT, William Hart; KEMMERLY, Jack E.; DURBIN, Steven M. **Análise de circuitos em engenharia.** 8. ed. Porto Alegre, RS: AMGH Ed., 2014. xix, 843 p. ISBN 9788580553833.
- CLOSE, Charles M. Circuitos lineares. 2.ed. Rio de Janeiro, RJ: LTC-Livros Técnicos e Científicos, c1975. 550 p. ISBN 85-216-049.
- NILSSON, James W.; RIEDEL, Susan A.Circuitos elétricos. 8. ed. São Paulo, SP: Pearson-Prentice Hall, c2009.
 xiii, 574 p. ISBN 978-85-7605-159-6.
- ALEXANDER, Charles K; SADIKU, Matthew N. O. **Fundamentos de circuitos elétricos.** Porto Alegre, RS: Bookman, 2003. (reimpressão 2006) 857 p.1 CD-ROM em bolso ISBN 85-363-0249-6
- DORF, Richard C.; SVOBODA, James A. **Introdução aos circuitos elétricos.** Rio de Janeiro, RJ: LTC-Livros Técnicos e Científicos, c2008. xxii, 795 p. ISBN 978-85-216-1582-8.

Universidade Federal do Amazonas

Faculdade de Tecnologia Plano de Ensino

- JOHNSON, David E.; HILBURN, John L.; JOHNSON, Johnny R. **Fundamentos de análise de circuitos elétricos.** 4. ed. Rio de Janeiro, RJ: LTC-Livros Técnicos e Científicos, c2000. 539 p. ISBN 8521612389.
- NAHVI, Mahmood; EDMINISTER, Joseph A. **Teoria e problemas de circuitos elétricos.** Porto Alegre, RS: Bookman, 2005. 478 p. (Coleção Schaum) ISBN 978-85-363-0551-6.

do Professor
Homologado em Reunião do Colegiado de /
Coordenador

Ciente dos Alunos com relação ao Plano de Ensino da Disciplina Circuitos Elétricos II.