

1. IDENTIFICAÇÃO DA DISCIPLINA									
CURSO: FT05, FT02-T e FT02-E			PERÍODO LETIVO: 2017/2		TURMA: 01, 03 e 04				
DISCIPLINA: Labo	ratório de	Sistema d	e Controle		SIGLA: FTE030				
CARGA HORÁRIA TOTAL: 30			CRÉDITOS: 1						
TEÓRICA: 0	PRÁTIC	A: 30	PRÉ-REQUISITO: FTE008						
PROFESSOR: lury Valente de Bessa									
E-MAIL(S): iurybessa@ufam.edu.br									
			as aulas práticas: 16h00 / 18h00	Horário e local de atendimento de alunos:					
				3ª Feira – 08h00 / 10h00					
				5ª Feira – 08h00 / 10h00					
				Laboratório de Controle					
2 EMENTA (Conforma DDC do auras)									

2. EMENTA (Conforme PPC do curso)

Conceitos e classificação de sistemas de controle: malha aberta e malha fechada, controle sequencial, servomecanismo, controle numérico, controle analógico, controle digital; Sensores e Atuadores: termistor, termopar, strain gage, sensores de efeito Hall, solenoide, LVDT, resolver, synchron, tacômetro, acelerômetro, potenciômetro, incidir. Conversor frequência tensão e tensão frequência, optointerrupters, servodrivers; Simulação Analógica: amplificador, integrador, somador, diagramas de simulação analógica, experimentos (malha aberta e malha fechada resposta de sistemas de 1ª e 2ª ordem); Simulação Digital: método numérico para resolução de equações diferenciais (Euler, Runge-Kutta, Adams-Smith), escolha do intervalo de integração, simulação pelo Matlab/Simulink; Análise de sistema linear; levantamento da resposta em frequência de sistemas de 1ª e 2ª ordem; Simulação e síntese de um sistema de controle por realimentação (controle de velocidade de um motor DC); Simulação e síntese de um sistema de controle por realimentação utilizando controladores P, PI e PID.

3. OBJETIVOS

3.1 GERAL (Conforme PPC do curso)

Realizar experimentos relacionados com o conteúdo da disciplina Sistema de Controle.

3.2 ESPECÍFICOS (Se houver)

4. CONTEÚDO PROGRAMÁTICO/CRONOGRAMA							
Datas	Aulas		Conteúdo	Professor**			
	Carga Horária	Tipo (T,P)*					
Aula 1	2	Т	Introdução ao Laboratório de Sistemas de Controle. Experimento 1: Classificação e propriedades de sistemas.	lury Bessa			
Aula 2	2	Т	Experimento 2: Representação e Simulação de Sistemas em Ambiente Computacional.	lury Bessa			
Aula 3	2	Т	Experimento 3: Sistemas de Controle com Realimentação.	lury Bessa			
Aula 4	2	Т	Experimento 4: Modelagem de Sistemas Dinâmicos.	lury Bessa			
Aula 5	2	Т	Experimento 5: Identificação com métodos determinísticos.	lury Bessa			
Aula 6	2	Т	Experimento 6: Controle PID.	lury Bessa			
Aula 7	2	Т	Experimento 7: Projeto de compensadores Avanço/Atraso de Fase.	lury Bessa			
Aula 8	2	Т	Experimento 8: Projeto de Sistemas de Controle no Espaço de Estados.	lury Bessa			
Aula 9	2	Т	Experimento 9: Sintonia de Controladores com Métodos Heurísticos.	lury Bessa			
Aula 10	2	Т	Primeira Apresentação do Projeto Final (PJF).	lury Bessa			
Aula 11	2	Т	Avaliação Computacional (AC).	lury Bessa			
Aula 12	2	Т	Projeto 1: Controle de Velocidade e Posição de Motor DC.	lury Bessa			
Aula 13	2	Т	Projeto 2: Controle de Fluxo e de Nível de um Processo Industrial.	lury Bessa			
Aula 14	2	Т	Projeto 2: Controle de Fluxo e de Nível de um Processo Industrial.	lury Bessa			
Aula 15	2	Т	Segunda Apresentação do Projeto Final (PJF)	lury Bessa			

^{*}Aula teórica ou prática

^{**}Em caso de disciplinas compartilhadas

5. PROCEDIMENTOS DE ENSINO E DE APRENDIZAGEM

Aulas expositivas ministradas pelo professor com apoio de recursos audio-visuais e atividades práticas presenciais no laboratório baseadas em roteiro com produção de relatórios científicos. Além disso, os discentes serão motivados a utilizar o conhecimento obtido neste programa para desenvolver um sistema de controle completo enfrentando questões de ordem prática como escolha e manuseio de atuadores e sensores, além de incertezas inerentes a sistemas reais.

6. PROCEDIMENTOS DE AVALIAÇÃO

Os discentes serão avaliados por meio dos relatórios referentes às 9 (nove) atividades experimentais realizadas durantes o curso. Os relatórios serão compilados em um relatório final (RF) a ser entregue no fim do período. Adicionalmente, será aplicada uma avaliação prática e computacional e os alunos deverão desenvolver três projetos: dois projetos de estratégias de controle para estudos de caso (Motor DC e Processo Industrial), e um projeto de um sistema de controle aplicado a um sistema real que deverá ser totalmente construído pelos alunos. Todas as atividades, com exceção das avaliações computacionais e final serão em grupos. Em resumo, a média dos exercícios escolares será composta por um relatório final (RF) com peso 2 (dois), uma avaliação computacional (AC) com peso 5, dois projetos parciais (PJ_1 e PJ_2) com peso 3 (três), e um projeto final (PJF) com peso 7. Sendo assim, a média dos exercícios escolares será computada por:

$$M_{EE} = \frac{7 \cdot PJF + 2 \cdot RF + 3 \cdot (PJ_1 + PJ_2) + 5 \cdot AC}{20}$$

Finalmente, a média final (MF) será calculada segundo a resolução nº 023/2017 – CONSEPE:

$$MF = \begin{cases} M_{EE}, & se \ M_{EE} \ge 8,0 \\ \frac{2 \cdot M_{EE} + P_F}{3}, & se \ M_{EE} < 8,0 \end{cases}$$

Legenda:

PJF: nota do projeto final

RF: nota do relatório final

AC: nota da avaliação computacional

 PJ_i : nota do *i*-ésimo projeto parcial

 M_{EE} : média dos exercícios escolares

 P_F : nota da prova final

MF: média final

7. REFERÊNCIAS (Conforme PPC do curso)

7.1 BÁSICA

- [1] DORF, Richard C.; BISHOP, Robert H. Sistemas de controle modernos. Rio de Janeiro: LTC, c2009. Xx, 724 p.
- [2] OGATA, KATSUHIKO, "Engenharia de Controle Moderno". Prentice Hall, 1982.
- [3] IRWIN, J. David. Análise de circuitos em engenharia. São Paulo, SP: Pearson Makron Books, 2000-2009. 848 p. ISBN 85-346-0693-5.

7.2 COMPLEMENTAR

- [1] KUO, BENJAMIN C. "Automatic Control Systems", Prentice Hall International.
- [2] NASCIMENTO JÚNIOR, Cairo Lúcio; YONEYAMA, Takaishi. Inteligência artificial em controle e automação. São Paulo: Edgard Blücher, 2000. 218 p. ISBN 8521233101
- [3] SILVEIRA, Paulo Rogério Da. Automação e controle discreto. 9ª edição. São Paulo: Érica, 1998.
- [4] HAYKIN, Simon S. Communication systems. 4th edition. New York: J. Willy & Sons, c2001. 816 p. ISBN 0-471-17869-1
- [5] BENTO, Celso Roberto. Sistemas de controle: teoria e projetos. São Paulo: Érica, 1989. 191 C

LOCAL E DATA: Manaus, 18 de julho de 2017.

ASSINATURA DO PROFESSOR:

DATA DA APROVAÇÃO DO COLEGIADO DO CURSO:

DATA DA ASSINATURA DO(A) COORDENADOR(A) DO CURSO: