Universidade Federal do Amazonas Faculdade de Tecnologia

Escalonamento (Tarefas Esporádicas)

Lucas Cordeiro

lucascordeiro@ufam.edu.br

Notas de Aula

Baseado nas notas de aula do Prof. Francisco Vasques, da Faculdade de Engenharia da Universidade do Porto.

http://www.fe.up.pt/~vasques

Baseado no livro de "Sistemas de Tempo Real" dos Professores Jean-Marie Farines, Joni da Silva Fraga e Rômulo Silva de Oliveira da 12ª Escola de Computação, IME-USP, São Paulo-SP, 24 a 28 de julho de 2000.

Tarefas Aperiódicas

- As tarefas aperiódicas que apresentam um intervalo mínimo entre suas ativações e um "deadline hard" são identificadas como esporádicas
 - Possui um comportamento temporal determinista
- As tarefas aperiódicas que não possuem seus tempos de chegada conhecidos e também não se caracterizam por um intervalo mínimo entre suas ativações, definem o que se pode chamar de uma carga computacional dinâmica
- As aperiódicas que apresentam "deadline hard" e necessitam de garantias dinâmicas em seus escalonamentos são chamadas de aperiódicas "firm"

Tarefas Esporádicas

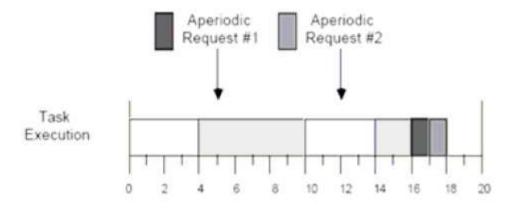
- Aplicações de tempo real envolvem tanto tarefas periódicas como esporádicas
- Por definição, uma tarefa esporádica pode estar um longo período de tempo sem ser ativada. No entanto, após a sua ativação, esta deverá ser executada a tempo
 - Em consequência, o algoritmo DM é particularmente adequado para o escalonamento de conjuntos de tarefas com tarefas esporádicas
- As tarefas periódicas são assumidas como críticas, necessitando de garantias em tempo de projeto para condições do pior caso
 - As tarefas esporádicas envolvem diferentes requisitos temporais: crítico, não crítico ou sem requisitos

Análise de Escal. de Tarefas Esporádicas

- Abordagem da resposta garantida: todas as tarefas com metas temporais críticas deverão ser escalonáveis para os seus tempos máximos de execução e as suas taxas máximas de ativação (pior caso)
 - A 1ª regra garante o respeito das metas temporais para todas as tarefas críticas
- 2. Abordagem do melhor esforço: todas as tarefas (críticas e não críticas) deverão ser escalonáveis quando são considerados os seus tempos médios de execução e as suas taxas médias de ativação (caso médio)
 - Uma conseqüência da 2ª regra é que possivelmente nem todas as metas temporais das tarefas não críticas serão cumpridas no caso de uma sobrecarga transitória

Tarefas Esporádicas

- Considerando que, na maior parte dos casos, os valores de T (intervalo mínimo de tempo entre ativações consecutivas) para as tarefas esporádicas são muito menores que os intervalos de tempo reais entre ativações consecutivas:
 - O cálculo de testes de escalonabilidade baseado nos valores de T será muito pessimista
 - A utilização total admissível para o sistema será muito reduzida
 - A utilização de servidores é aconselhável para efetuar o escalonamento de tarefas esporádicas


Uso de Servidores

- Tarefas cujo intervalo de tempo entre ativações consecutivas não tem mínimo definido
- 1ª solução: atribuir os menores valores de prioridade às tarefas aperiódicas (ou esporádicas)
 - Consequência: difícil garantir o respeito das metas temporais
- Para poder ser considerada a utilização de tarefas aperiódicas, torna-se necessário impor um limite superior à sua utilização de recursos computacionais através da utilização de servidores
- Iremos considerar políticas baseadas em prioridades fixas, em especial, o "Rate Monotonic"

Utilização de Servidores Background (1)

 As tarefas aperiódicas são executadas unicamente quando o processador está ocioso

tarefa	C	T	d	U	
τ_I	4	10	10	0,4	
$ au_2$	8	20	20	0,4	
			U_total: 0,8		

Utilização de Servidores Background (2)

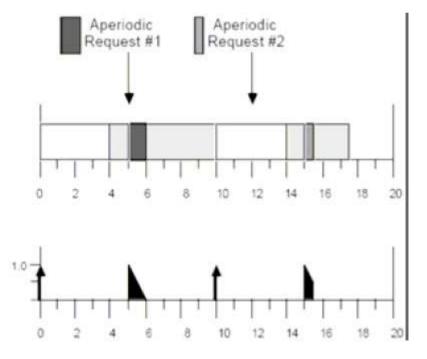
Vantagens

- Tem um impacto nulo sobre o escalonamento das tarefas periódicas (condições de escalonabilidade mantém-se)
- Simplicidade de implementação

Desvantagens

- A capacidade de processamento atribuída às tarefas aperiódicas depende da carga imposta pelas tarefas periódicas
- O tempo de resposta a pedidos de ativação de tarefas aperiódicas pode ser muito longo

Utilização de Servidores Polling (1)


Task Execution

Polling Server

Capacity

- Uma tarefa periódica extra: o servidor de "polling" é adicionado ao conjunto de tarefas a escalonar
 - Tarefa com capacidade C_s e periodicidade T_s
- Durante o tempo de execução do servidor de "polling" (C_s), as tarefas aperiódicas serão executadas

tarefa	C	T	d	U
$ au_{Polling}$	1	5	5	0,2
τ_I	4	10	10	0,4
$ au_2$	8	20	20	0,4
	U_total: 1			

Utilização de Servidores Polling (2)

- Teste de escalonabilidade para as tarefas periódicas:
 - Teste suficiente de escalonabilidade (RM)

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} + \frac{C_s}{T_s} \le (n+1) \binom{n+1}{2} - 1$$

 Extensão a m servidores com prioridades diferentes para o escalonamento de tarefas aperiódicas com relevâncias diferentes

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} + \sum_{j=1}^{m} \frac{C_j}{T_j} \le (n+m) \binom{n+m}{2} - 1$$

Utilização de Servidores Polling (3)

Vantagens:

- Simplicidade, quando se considera o teste de escalonabilidade para as tarefas periódicas
- Fornece um melhor serviço às tarefas aperiódicas, quando comparado com o "background server"

Desvantagens:

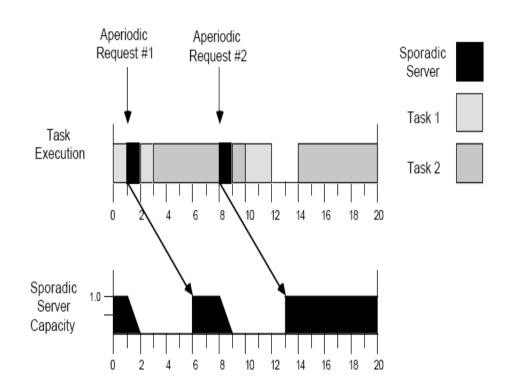
- A capacidade do servidor é perdida, caso não existam tarefas aperiódicas com pedidos de execução ativados
- Não é capaz de fornecer uma resposta imediata às tarefas aperiódicas

Servidores Sporadic

- O algoritmo SS implementa uma tarefa periódica (servidor) de alta prioridade para servir pedidos aperiódicos, que mantém a sua capacidade de execução até que um pedido de ativação de uma tarefa aperiódica ocorra
- É equivalente ao algoritmo DM, exceto no que diz respeito aos instantes em que a capacidade do servidor é recolocada no seu valor máximo

Definições (1)

Definições:

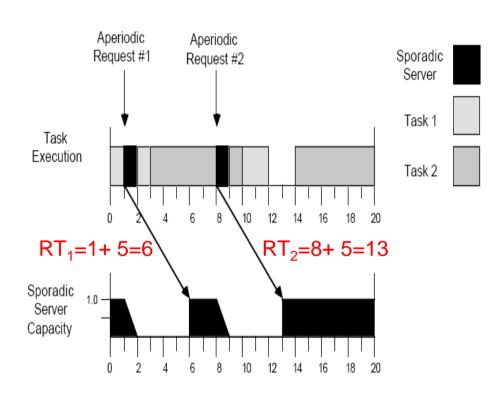

- P_s: nível de prioridade em execução do processador
- P_i: é um dos níveis de prioridades do sistema
 - P₁ é a maior prioridade do sistema
- RT; Instante de recarregamento para o nível de prioridade
 P;
- Intervalo Ativo: O nível de prioridade P_i está em um intervalo ativo quando P_i ≤ P_s
- Ocioso: O nível de prioridade P_i está ocioso ("idle") se P_i >
 P_S

Definições (2)

- Para um servidor esporádico que execute a um nível de prioridade P_i
 - Se o servidor ainda tiver tempo de execução disponível, o seu instante de recarregamento RT_i é definido no instante t em que o nível de prioridade P_i fica ativo
 - Se a sua capacidade já estiver esgotada, o seu instante de recarregamento RT_i será definido quando a capacidade do servidor for de novo não nula e P_i estiver ativo
 - Em ambos os casos: $RT_i = t + T_i$
 - O recarregamento da capacidade do servidor será igual ao tempo de execução consumido desde a última vez que P_i mudou de ocioso para ativo

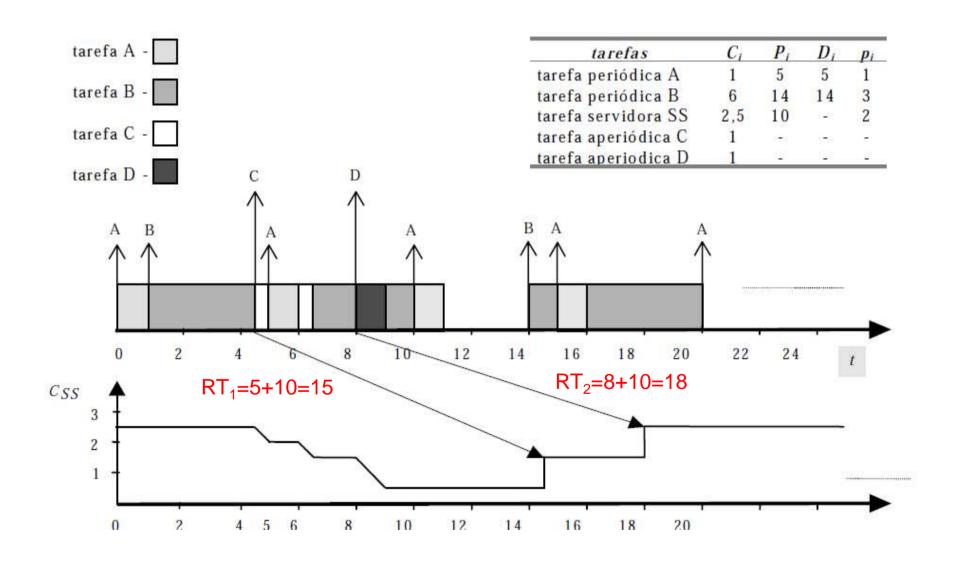
Utilização de Servidores Sporadic (1)

- SS com o nível de prioridade mais elevado: P1
 - Como o SS é a única tarefa com o nível de prioridade mais elevado, P1 só fica ativo quando existe um pedido de execução de uma tarefa aperiódica
 - Logo, RT1 só é definido neste instante
 - Logo, a capacidade do servidor é reposta um período após o pedido de execução de uma tarefa aperiódica



<u>Task</u>	Exec Time	Period	Utilization
SS	1	5	20.0%
τ_1	2	10	20.0%
τ_2	6	14	42.9%

Utilização de Servidores Sporadic (2)


SS com o nível de prioridade mais elevado: P1

- Como o SS é a única tarefa com o nível de prioridade mais elevado, P1 só fica ativo quando existe um pedido de execução de uma tarefa aperiódica
- Logo, RT1 só é definido neste instante
- Logo, a capacidade do servidor é reposta um período após o pedido de execução de uma tarefa aperiódica

<u>Task</u>	Exec Time	Period	<u>Utilization</u>
SS	1	5	20.0%
τ_1	2	10	20.0%
τ_2	6	14	42.9%

Utilização de Servidores Sporadic (3)

Exercício 1

Verifique se o conjunto de tarefas abaixo é escalonável usando a técnica de servidores polling. Caso positivo, apresente o diagrama temporal considerando duas solicitações aperiódicas no tempo t=4 e t=9 com durações de 1 u.t.

Tarefa	Computação	Período	Deadline
$T_{polling}$	1	4	4
T_2	2	6	6
T_3	3	10	9

Exercício 2

 Calcule a capacidade do servidor sporadic para o seguinte conjunto de tarefas. Considere que as solicitações aperiódicas ocorrem nos tempos t=12 e t=18 com duração de 4 e 8 u.t., respectivamente.

Tarefa	Computação	Período	Deadline	Prioridade
T ₁	4	12	12	2
T_2	4	20	20	3
T _{ss}	8	32	10	1
T_3	8	10	10	4