Handling Unbounded Loops with
ESBMC 1.20

Jeremy Morse, Lucas Cordeiro
Denis Nicole, Bernd Fischer

S

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

ESBMC: SMT-based BMC of single-

and multi-threaded software

 exploits SMT solvers and their background theories:

— optimized encodings for pointers, bit operations, unions
and arithmetic over- and underflow

— efficient search methods (non-chronological backtracking,
conflict clauses learning)

e supports verifying multi-threaded software that uses
pthreads threading library
— Interleaves only at “visible” instructions
— lazy exploration of the reachability tree
— optional context-bound

e derived from CBMC

ESBMC Verification Support

 Dbuilt-in properties:
— arithmetic under- and overflow
— pointer safety
— array bounds
— division by zero
— memory leaks
— atomicity and order violations
— deadlocks
— data races

e user-specified assertions
(__ESBMC_assume, ESBMC assert)

 built-in scheduling functions (__ ESBMC_atomic_begin,
~_ _ESBMC_atomic_end, ESBMC yield)

Differences to ESBMC 1.17

ESBMC 1.20 is largely a bugfixing release:
— memory handling

— Internal data structure (replaced CBMC'’s string-based
accessor functions)

— Z3 encoding (replaced the name equivalence used in the
pointer representation)

Improved our pthread-handling and added missing
seguence points (pthread join-function)

e produces a smaller number of false results
— score improvement of more than 25%

— overall verification time reduced by about 25%

Induction-Based Verification

k-induction checks...

 pbase case (base,): find a counter-example with up
to k loop unwindings (plain BMC)

» forward condition (fwd,): check that P holds in all
states reachable within k unwindings

* Inductive step (step,): check that whenever P holds
for k unwindings, it also holds after next unwinding
— havoc state
— run K iterations
— assume invariant
— run final iteration

= Iterative deepening Iif inconclusive

The k-induction algorithm

k=initial bound
while true do
iIf base, then
return trace s[0..k]
else if fwd,
return true
else if step, then
return true
end if
k=k+1
end

The k-induction algorithm

. - R
. Inserts unwinding
k=initial bound assumption after
while true do each loop)

iIf base, then
return trace s[0..k]

else if fwad,
return true

else if step, then
return true

end if

k=k+1

end

The k-induction algorithm

Inserts unwinding

k=initial bound assumption after
while true do each loop

-

iIf base, then

return trace s[0..k] | NSerts unwinding
_ assertion after each
else if fwd,

J

return true Kloop
else if step, then
return true
end if
k=k+1
end

The k-induction algorithm

k=initial bound
while true do
iIf base, then

. - A

Inserts unwinding

assumption after
each loop)
. -)

return trace s[0..k] | NSerts unwinding

] assertion after each
else if fwd, 00

29 b

return true
else if step, then
return true
end if
k=k+1
end

_ ™
Jhavoc variables that
occur in the loop’s
termination condition

J

The k-induction algorithm

. - R
k=initial Inserts unwinding
=initial bound assumption after
while true do each loop)

iIf base, then

. N ™
return trace s[0..k] | NSerts unwinding
_ assertion after each
else if fwd,

loop)
return true

-

end if

] _ ~
else if step, then — havoe variables that
return true occur in the loop’s
termination condition

J

k=k+1 r .
unable to falsify or
end prove the property

Running example

Provethat S,=) a=na forn=>1

=1

unsigned int nondet_uint();
int main() {
unsigned int i, n=nondet_uint(), sn=0;
assume (n>=1);
for(i=1; i<=n; i++)
sn = sn + a;
assert(sn==n%*a);

Running example: base case

Insert an unwinding assumption consisting of the
termination condition after the loop

— find a counter-example with k loop unwindings

unsigned int nondet_uint();
int main() {
unsigned int i, n=nondet_uint(), sn=0;
assume (n>=1);
for(i=1; i<=n; i++)
sn = sn + a;
assume(i>n);
assert(sn==n*a);

Running example: forward condition

Insert an unwinding assertion consisting of the
termination condition after the loop

— check that P holds in all states reachable with k unwindings

unsigned int nondet_uint();
int main() {
unsigned int i, n=nondet_uint(), sn=0;
assume (n>=1);
for(i=1; i<=n; i++)
sn = sn + a;
assert(i>n);
assert(sn==n*a);

Running example: inductive step

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

unsigned int nondet_uint();

typedef struct state {
unsigned int i, n, sn;

} statet;

int main() {
unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, s[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Running example: inductive step

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

unsigned int nondet_uiny\deﬁne the type of the]

tYPEdEf struct state { program state
unsigned int i, n, sn;
} statet;
int main() {
unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, s[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Running example: inductive step

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

unsigned int nondet_uiny\deﬁne the type of the]

typedef struct state { program state
unsigned int i, n, sn;

} statet;

int main() { state vector]
unsigned int i, n=non
assume(n>=1);
statet cs, s[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
CcS.n=n;

n=0, k;

\77

Running example: inductive step

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

unsigned int nondet_uiny\deﬁne the type of the]

typedef struct state { program state
unsigned int i, n, sn;

} statet;

int main() { State vector]
unsigned int i, n=non
assume(n>=1);
statet cs, s[n];
cs.i=nondet_uint(); explore all possible
cs.sn=nondet_uint(); values implicitly
cs.n=n;

n=0, k;

\77

Running example: inductive step

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

for(i=1; i<=n; i++) {
s[i-1]=cs;
sSn = sn + a;
CS.i=l;
CS.SN=sn;
CcS.n=n;
assume(s[i-1]!=cs);
b
assume(i>n);
assert(sn == n*a);

y

Running example: inductive step

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

(A

for(i=1; i<=an capture the state cs

s[i-1]=cs; xbefore the iteration)

sn = sn + a;

CS.i=lI;

CS.sn=sn;

CS.n=n;

assume(s[i-1]!=cs);

»

assume(i>n);
assert(sn == n*a);

y

Running example: inductive step

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

N

for(i=1; i< =an(capture the_ state cs
s[i-1]=cs; xbefore the iteration)
sn = sn + a; S
CS.i=l; (capture the state cs
Cs.sn=sn; \\after the iteration
cs.Nn=n, y
assume(s[i-1]!=cs);

g

assume(i>n);

assert(sn == n*a);

g

Running example: inductive step

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

N

for(i=1; i< =anrcapture the_ stat_e CS
s[i-1]=cs: Kbefore the iteration)
SN = sn + a; N
CS.i=l; (capture the state cs
Cs.SN=sn, \\after the iteration
CcS.n=n; /
assume(s[i-1]!=cs); constraints are

> iIncluded by means

assume(i>n); of assumptions

assert(sn == n*a);

bs

Running example: inductive step

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

N

for(i=1; i< =anrCapture the state cs
s[i-1]=cs: Kbefore the iteration)
sn = sn + a; N
Cs.i=l; (capture the state cs
Cs.snN=sn, \\after the iteration
Ccs.n=n; <
assume(s[i-1]!=cs); constraints are

+ Included by means

assume(i>n); of assumptions

assert(sn == _ D

1 Insert unwinding 1

Lassumption]

Strengths:
* robust context-bounded model checker for multi-
threaded C code

e combines plain BMC with k-induction
— k-induction by itself is by far not as strong as plain BMC
= although it produced substantially fewer false results

Strengths:

e robust context-bounded model checker for multi-
threaded C code
e combines plain BMC with k-induction

— k-induction by itself is by far not as strong as plain BMC
= although it produced substantially fewer false results

Weaknesses:

« scalabllity (like other BMCs...)
— loop unrolling
— Interleavings

e pointer handling and points-to analysis
— exposed by excessive typecasts in the ClL-converted code
— better memory model in progress

