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Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)
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Verification Challenges

 verification methodologies for embedded systems

« verification of embedded systems raises additional challenges
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handle concurrent software

meet time and energy constraints

Generate test
vectors with
constraints

evaluate implementation choices (design space exploration)

support legacy designs (usually written in low-level languages)

* Improve coverage and reduce verification time




Bounded Model Checking (BMC)

Basic Idea: check negation of given property up to a given depth
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« transition system M unrolled k times
— for programs: loops, arrays, ...
 translated into verification condition y such that

y satisfiable iff ¢ has counterexample of max. depth k

* has been applied successfully to verify (embedded) software
— main criticism is related to completeness



Difficulties in proving the correctness of
programs with loops in BMC

« BMC tools typically fail to verify programs that contain
bounded and unbounded loops

— they can prove correctness only if an upper bound of kis
known (unwinding assertion)
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Research Problem (RP)

« (RP1) provide suitable encoding into the Satisfiability Modulo
Theories (SMT) by extending background theories (e.g., FP)

— how to reason accurately about heap-manipulating programs?

« (RP2) exploit SMT techniques to leverage bounded model
checking of concurrent software

— how to exploit unsat cores to remove redundant behaviour?

* (RP3) prove correctness and timeliness (incl. energy) of
embedded systems considering hardware constraints

— how to check system robustness w.r.t. implementation aspects?

« (RP4) incorporate knowledge about system purpose and
features to detect system-level and behaviour failures

— how to model target applications or system behaviour?



Achievements (1)

« (RP1) proposed the first SMT-based BMC for full C programs
(ASE'09,TSE'12)

— in addition to support C++98 (ECBS’13), CUDA (SAC’16), and Qt-
based consumer electronics applications (SPIN’16)

— memory management test-case generation of C programs using
BMC (SEFM’15, TACAS’16)

» coverage and verification time are still limited, especially for programs that
contain floating-point arithmetic and dynamic memory allocation

« (RP2) proposed SMT-based context-BMC to verify deadlock,
data races, lock acquisition ordering, and atomicity violations
iIn multi-threaded software (ICSE’11)

— considers monotonic partial-order reduction and state-hashing
techniques to prune the state-space exploration

» recent advances lead to BMC of multi-threaded C programs via Lazy
Sequentialization



Achievements (2)

« (RP3) proposed a verification approach for (embedded)
software using k-induction and invariants (TACAS'13,
STTT'15, SBESC'15)

— main challenge is to compute and strengthen loop invariants to
prove program correctness and timeliness

» exploiting the combination of different invariant generation algorithms to
ensure system robustness w.r.t. implementation aspects

* (RP4) proposed SMT-based context-BMC to verify overflow,
limit cycle, time constraints, stability, and minimum phase in
digital systems (IECON’14, SPIN’'15, DAES’16)

— specify system-level properties using LTL (SEFM’11,SoSyM’15)
— understand programming bugs using counterexamples (IFM'12)
— fault localization in multi-threaded C programs (SBESC’15)

» verify cyber-physical systems (computation, control, and communication)



Automated Software and Systems

Verification Laboratory

ESBMC is a BMC tool for embedded C/C++98 software

based on SMT solvers (future release includes clang)
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properties related to digital systems
(closed-loop control systems)

ESBMC is also able to prove properties
for any given depth using k-induction and
(inductive) invariants
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Research & Development Plan

concurrent software

-
- lazy sequentialization
- unsat core analysis
- MPI, OpenMP
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digital systems
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