
SMT-Based Context-Bounded Model 
Checking for Embedded Systems

Lucas Cordeiro

Joint work with

Jeremy Morse, Denis Nicole, Bernd Fischer, 

Eddie Lima, and João Edgar Chaves



• embedded system is part of a well-specified larger system 

(intelligent product)

Embedded systems are ubiquitous
but their verification becomes more difficult.

keyboard

LCD

real-time 
computer 
system 
(RTCS)

sensor

actuator

network

mass production software in read-only 

memory
multi-core processors

limited amount of energy

RTCS usually 

implemented 

in µC, DSP, 

and FPGA



• verification methodologies for embedded systems

• verification of embedded systems raises additional challenges

– handle concurrent software

– meet time and energy constraints

– evaluate implementation choices (design space exploration)

– support legacy designs (usually written in low-level languages)

• improve coverage and reduce verification time

Verification Challenges

Specification

Embedded Software

Microprocessor 
model

Generate test 
vectors with 
constraints

assert data

(x>0) [1..7]



Bounded Model Checking (BMC)

Basic Idea: check negation of given property up to a given depth

• transition system M unrolled k times

– for programs: loops, arrays, …

• translated into verification condition ψ such that

ψ satisfiable iff ϕ has counterexample of max. depth k

• has been applied successfully to verify (embedded) software

– main criticism is related to completeness

. . .

M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk

counterexample trace 

∨ ∨ ∨ ∨

transition 

system

property

bound



Difficulties in proving the correctness of 
programs with loops in BMC

• BMC tools typically fail to verify programs that contain 

bounded and unbounded loops

– they can prove correctness only if an upper bound of k is 

known (unwinding assertion)

the loop will be unfolded 2n-1 times
(in the worst case, 232-1 times on 32
bits integer)

sn=sn+a

i++

sn==n*a

4,294,967,295 

loop unwindings



• (RP1) provide suitable encoding into the Satisfiability Modulo 

Theories (SMT) by extending background theories (e.g., FP)

– how to reason accurately about heap-manipulating programs?

• (RP2) exploit SMT techniques to leverage bounded model 

checking of concurrent software

– how to exploit unsat cores to remove redundant behaviour?

• (RP3) prove correctness and timeliness (incl. energy) of 

embedded systems considering hardware constraints

– how to check system robustness w.r.t. implementation aspects?

• (RP4) incorporate knowledge about system purpose and 

features to detect system-level and behaviour failures

– how to model target applications or system behaviour?

Research Problem (RP)



• (RP1) proposed the first SMT-based BMC for full C programs 
(ASE’09,TSE’12)

– in addition to support C++98 (ECBS’13), CUDA (SAC’16), and Qt-
based consumer electronics applications (SPIN’16)

– memory management test-case generation of C programs using 
BMC (SEFM’15, TACAS’16)

� coverage and verification time are still limited, especially for programs that 
contain floating-point arithmetic and dynamic memory allocation

• (RP2) proposed SMT-based context-BMC to verify deadlock, 
data races, lock acquisition ordering, and atomicity violations 
in multi-threaded software (ICSE’11)

– considers monotonic partial-order reduction and state-hashing 
techniques to prune the state-space exploration

� recent advances lead to BMC of multi-threaded C programs via Lazy 
Sequentialization

Achievements (1)



• (RP3) proposed a verification approach for (embedded) 
software using k-induction and invariants (TACAS’13, 
STTT’15, SBESC’15)

– main challenge is to compute and strengthen loop invariants to 
prove program correctness and timeliness

� exploiting the combination of different invariant generation algorithms to 
ensure system robustness w.r.t. implementation aspects

• (RP4) proposed SMT-based context-BMC to verify overflow, 
limit cycle, time constraints, stability, and minimum phase in 
digital systems (IECON’14, SPIN’15, DAES’16)

– specify system-level properties using LTL (SEFM’11,SoSyM’15)

– understand programming bugs using counterexamples (IFM’12)

– fault localization in multi-threaded C programs (SBESC’15)

� verify cyber-physical systems (computation, control, and communication)

Achievements (2)



Automated Software and Systems 
Verification Laboratory

• ESBMC is a BMC tool for embedded C/C++98 software 

based on SMT solvers (future release includes clang)

− ESBMC-GPU checks concurrency 

errors in C/C++98/CUDA programs

− DSVerifier checks low-level 

properties related to digital systems 

(closed-loop control systems)

− ESBMC-QtOM checks C++ programs 

based on Qt cross-platform framework

C/C++

• ESBMC is also able to prove properties 

for any given depth using k-induction and 

(inductive) invariants

Qt CUDA

esbmc-gpu.org

esbmc.org/qtom

dsverifier.org

esbmc.org



Research & Development Plan

concurrent software C++/SystemC/Java digital systems

- lazy sequentialization

- unsat core analysis 

- MPI, OpenMP

- C++11, C++14

- SystemC

- Java byte-code

- UAVs

- system robustness

- fault localization

BMC as design and

verification tool

k-Induction

- invariant generation

- dynamic memory alloc.

- multi-threaded programs

SMT encoding

- improve encodings

- incremental push/pop

- algorithm portfolio

research 
partners

industry

governmental 
funding 

agencies


