SMT-Based Context-Bounded Model
Checking for Embedded Systems

Lucas Cordeiro

Joint work with
Jeremy Morse, Denis Nicole, Bernd Fischer,
Eddie Lima, and Joao Edgar Chaves

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

RTCS usually VRSN real-time SENSOF

implemented computer "
in uC, DSP, system lﬁr
and FPGA — (RTCS) actuator

mass production

software in read-only
memory

multi-core processors
limited amount of energy

Verification Challenges

 verification methodologies for embedded systems

« verification of embedded systems raises additional challenges

Specification

assert

—

(x>0)

Embedded Software| | data
Microprocessor <—‘
model [1..7]

handle concurrent software

meet time and energy constraints

Generate test
vectors with
constraints

evaluate implementation choices (design space exploration)

support legacy designs (usually written in low-level languages)

* Improve coverage and reduce verification time

Bounded Model Checking (BMC)

Basic Idea: check negation of given property up to a given depth

4) - property
—|(P0 A\ 0y v Qs Qg | Vv O, «-
transition © > @ ,® ... @——@
system - My M, M, M, Mk‘\\
_counterexample trace y bound

« transition system M unrolled k times
— for programs: loops, arrays, ...
 translated into verification condition y such that

y satisfiable iff ¢ has counterexample of max. depth k

* has been applied successfully to verify (embedded) software
— main criticism is related to completeness

Difficulties in proving the correctness of
programs with loops in BMC

« BMC tools typically fail to verify programs that contain
bounded and unbounded loops

— they can prove correctness only if an upper bound of kis
known (unwinding assertion)

4,294,967,295

n start —:- loop unwindings
SH—Z&:na,n?—_‘«“‘l ‘

n=>1

Gﬁmpute ‘L'-ID (ncrement)
the loop will be unfolded 2™ times sn=sn+a’; =, i < lz > n
(in the worst case, 2321 times on 32 _
bits integer)

sn==n¥*a

Research Problem (RP)

« (RP1) provide suitable encoding into the Satisfiability Modulo
Theories (SMT) by extending background theories (e.g., FP)

— how to reason accurately about heap-manipulating programs?

« (RP2) exploit SMT techniques to leverage bounded model
checking of concurrent software

— how to exploit unsat cores to remove redundant behaviour?

* (RP3) prove correctness and timeliness (incl. energy) of
embedded systems considering hardware constraints

— how to check system robustness w.r.t. implementation aspects?

« (RP4) incorporate knowledge about system purpose and
features to detect system-level and behaviour failures

— how to model target applications or system behaviour?

Achievements (1)

« (RP1) proposed the first SMT-based BMC for full C programs
(ASE'09,TSE'12)

— in addition to support C++98 (ECBS’13), CUDA (SAC’16), and Qt-
based consumer electronics applications (SPIN’16)

— memory management test-case generation of C programs using
BMC (SEFM’15, TACAS’16)

» coverage and verification time are still limited, especially for programs that
contain floating-point arithmetic and dynamic memory allocation

« (RP2) proposed SMT-based context-BMC to verify deadlock,
data races, lock acquisition ordering, and atomicity violations
iIn multi-threaded software (ICSE’11)

— considers monotonic partial-order reduction and state-hashing
techniques to prune the state-space exploration

» recent advances lead to BMC of multi-threaded C programs via Lazy
Sequentialization

Achievements (2)

« (RP3) proposed a verification approach for (embedded)
software using k-induction and invariants (TACAS'13,
STTT'15, SBESC'15)

— main challenge is to compute and strengthen loop invariants to
prove program correctness and timeliness

» exploiting the combination of different invariant generation algorithms to
ensure system robustness w.r.t. implementation aspects

* (RP4) proposed SMT-based context-BMC to verify overflow,
limit cycle, time constraints, stability, and minimum phase in
digital systems (IECON’14, SPIN’'15, DAES’16)

— specify system-level properties using LTL (SEFM’11,SoSyM’15)
— understand programming bugs using counterexamples (IFM'12)
— fault localization in multi-threaded C programs (SBESC’15)

» verify cyber-physical systems (computation, control, and communication)

Automated Software and Systems

Verification Laboratory

ESBMC is a BMC tool for embedded C/C++98 software

based on SMT solvers (future release includes clang)

@

— ESBMC-GPU checks concurrency ' H C/Ct+ H
Qt CUDA IJ

errors in G/C++98/CUDA programs | =

— ESBMC-QtOM checks C++ programs
based on Qt cross-platform framework

— DSVerifier checks low-level

/

4

ESBMC

i

properties related to digital systems
(closed-loop control systems)

ESBMC is also able to prove properties
for any given depth using k-induction and
(inductive) invariants

ESBMC

Verifier

— _—

esbmc.org

esbmc-gpu.org

esbmc.org/qtom

dsverifier.org

Research & Development Plan

concurrent software

-
- lazy sequentialization
- unsat core analysis
- MPI, OpenMP

_

\

C++/SystemC/Java

-

J

research
partners

C++11, C++14
SystemC

- Java byte-code

\-

~

J

BMC as design and
verification tool

e

digital systems

4)
- UAVs
- system robustness
- fault localization

. J

(
- invariant generation
- dynamic memory alloc.

- multi-threaded programs
-

\

/

governmental

funding
agencies

-
- improve encodings

- incremental push/pop
- algorithm portfolio

_

~N

J

