Handling Loops in Bounded Model Checking of C Programs via k-Induction

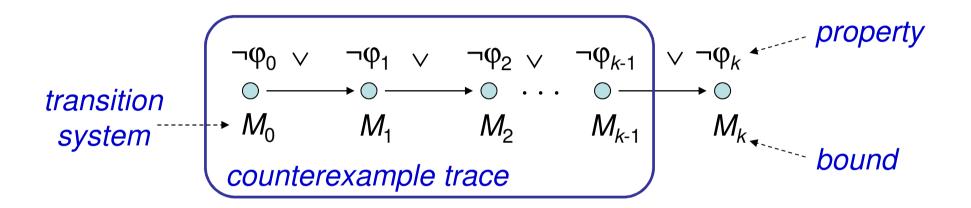
Lucas Cordeiro

Joint work with

Jeremy Morse, Mikhail Ramalho, Herberto Rocha, Hussama Ismail, Raimundo Barreto, Denis Nicole, and Bernd Fischer

Bounded Model Checking (BMC)

basic Idea: check negation of given property up to given depth



- transition system *M* unrolled *k* times
 - for programs: loops, arrays, ...
- translated into verification condition $\boldsymbol{\psi}$ such that

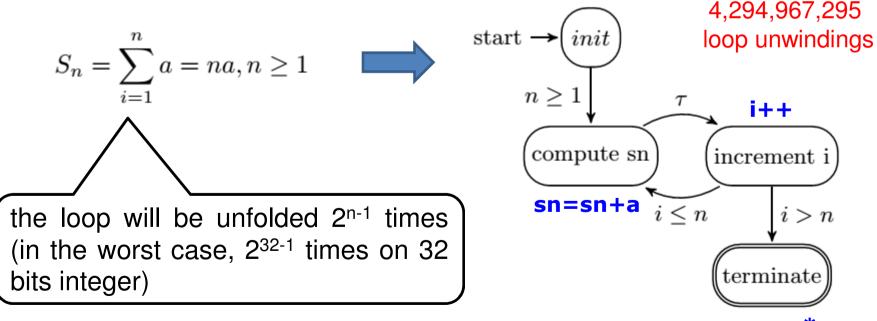
ψ satisfiable iff ϕ has counterexample of max. depth *k*

• has been applied successfully to verify (embedded) software

Difficulties in proving the correctness of programs with loops in BMC

- BMC techniques can falsify properties up to a given depth k
 - they can prove correctness only if an upper bound of k is known (**unwinding assertion**)

» BMC tools typically fail to verify programs that contain bounded and unbounded loops



sn==n*a

ESBMC: SMT-based BMC of single- and multi-threaded software

SMT-b Goal: prove that an invariant is *k*-inductive

- n CBMC:
- symbolicall ______ cutes C into SSA, produces QF formulae
- unrolls loops up to a maximum bound k
- assertion failure *iff* corresponding formula is satisfiable
 - safety properties (array bounds, pointer dereferences, overflows,...)
 - user-specified properties

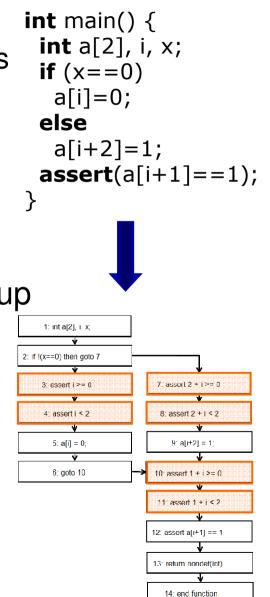
Multi-threaded programs:

- produces one SSA program for each possible thread interleaving
- interleaves only at "visible" instructions
- optional context bound

- program modelled as state transition system in
 - *state*: program counter and program variables
 - derived from control-flow graph
 - checked safety properties give extra nodes
- program unfolded up to given bounds
 - loop iterations
 - context switches
- unfolded program optimized to reduce blow-up

crucial

- constant propagation
- forward substitutions



- program modelled as state transition system in
 - *state*: program counter and program variables
 - derived from control-flow graph
 - checked safety properties give extra nodes
- program unfolded up to given bounds
 - loop iterations
 - context switches
- unfolded program optimized to reduce blow-up
 - constant propagation
 - forward substitutions
- front-end converts unrolled and optimized program into SSA

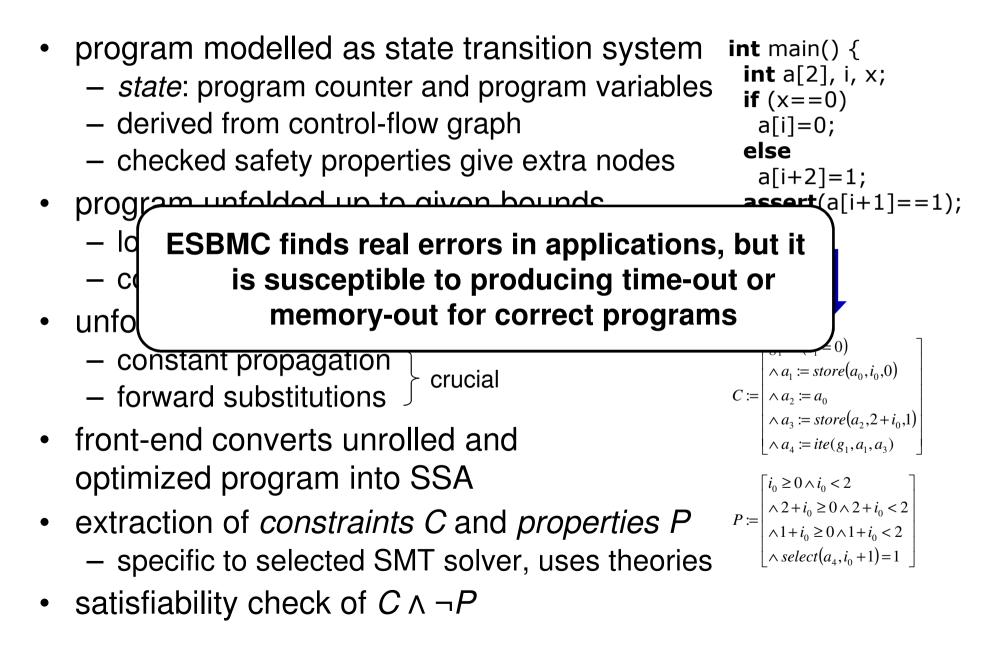
int main() { **int** a[2], i, x; **if** (x==0)a[i]=0; else a[i+2]=1;**assert**(a[i+1]==1); } $q_1 = x_1 = 0$ $a_1 = a_0$ WITH $[i_0:=0]$ $a_2 = a_0$ $a_3 = a_2$ WITH [2+i_0:=1] $a_4 = g_1 ? a_1 : a_3$ $t_1 = a_4 [1+i_0] == 1$

program modelled as state transition system in

- *state*: program counter and program variables
- derived from control-flow graph
- checked safety properties give extra nodes
- program unfolded up to given bounds
 - loop iterations
 - context switches
- unfolded program optimized to reduce blow-up
 - constant propagation 1
 - forward substitutions
- front-end converts unrolled and optimized program into SSA
- extraction of *constraints C* and *properties P* specific to selected SMT solver, uses theories
- satisfiability check of $C \land \neg P$

int main() { **int** a[2], i, x; **if** (x==0)a[i]=0; else a[i+2]=1;**assert**(a[i+1]==1); $g_1 := (x_1 = 0)$ $\wedge a_1 \coloneqq store(a_0, i_0, 0)$ $C := | \wedge a_2 := a_0$ $\wedge a_3 := store(a_2, 2+i_0, 1)$ $\wedge a_4 \coloneqq ite(g_1, a_1, a_3)$ $\begin{bmatrix} i_0 \ge 0 \land i_0 < 2 \end{bmatrix}$ $| \wedge 2 + i_0 \ge 0 \wedge 2 + i_0 < 2$ P := $\wedge 1 + i_0 \ge 0 \wedge 1 + i_0 < 2$

 \land select $(a_4, i_0 + 1) = 1$



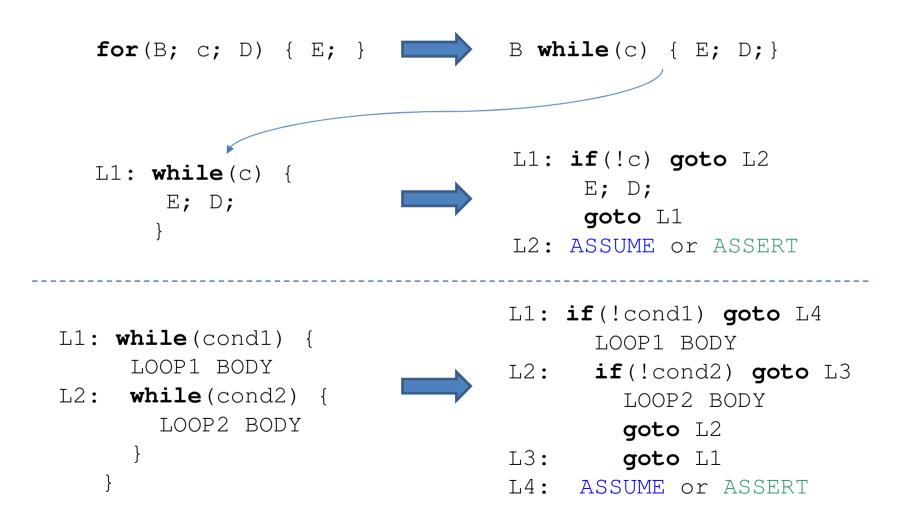
Induction-Based Verification

k-induction checks loop-free programs...

- base case (base_k): find a counter-example with up to k loop unwindings (plain BMC)
- forward condition (*fwd_k*): check that *P* holds in all states reachable within *k* unwindings
- inductive step (step_k): check that whenever P holds for k unwindings, it also holds after next unwinding
 - havoc state
 - run k iterations
 - assume invariant
 - run final iteration
- \Rightarrow iterative deepening if inconclusive

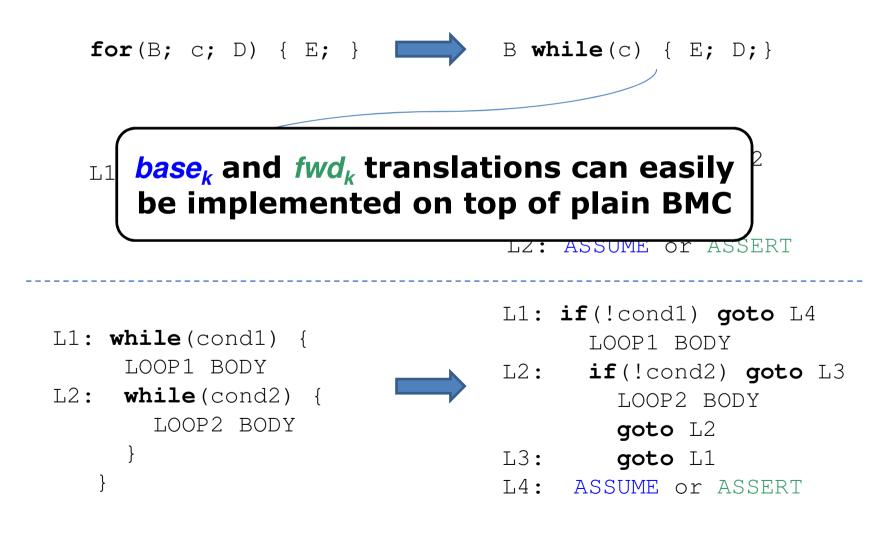
Loop-free Programs (*base_k* and *fwd_k*)

 A loop-free program is represented by a straight-line program (without loops) using *if*-statements



Loop-free Programs (*base_k* and *fwd_k*)

 A loop-free program is represented by a straight-line program (without loops) using *if*-statements

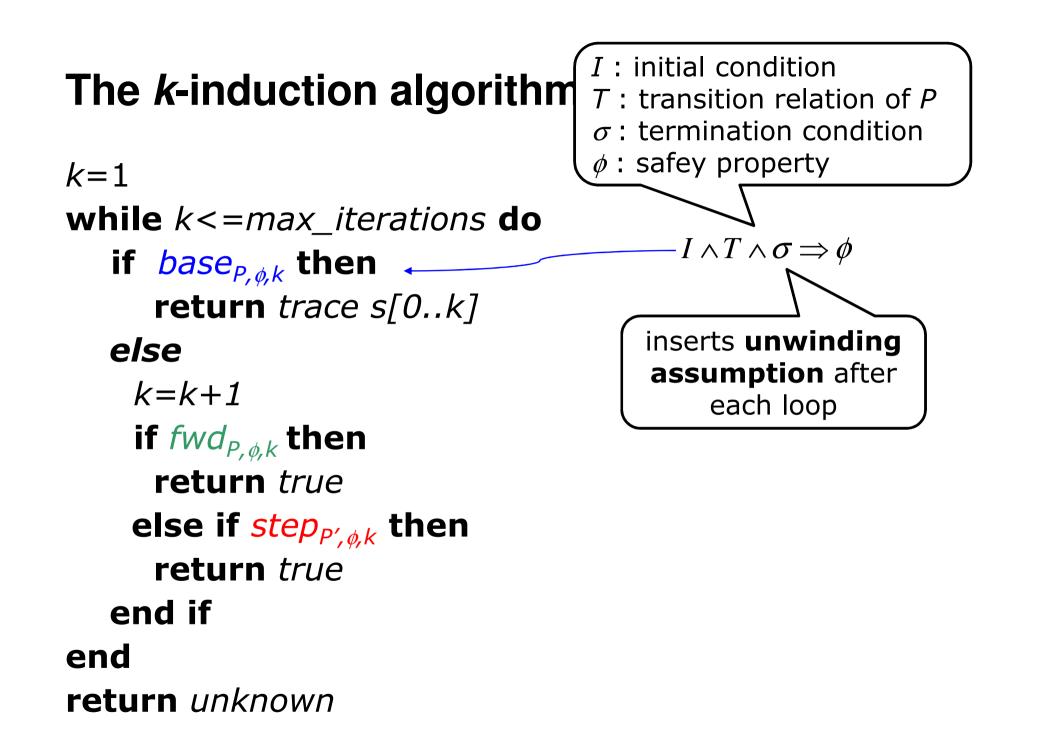


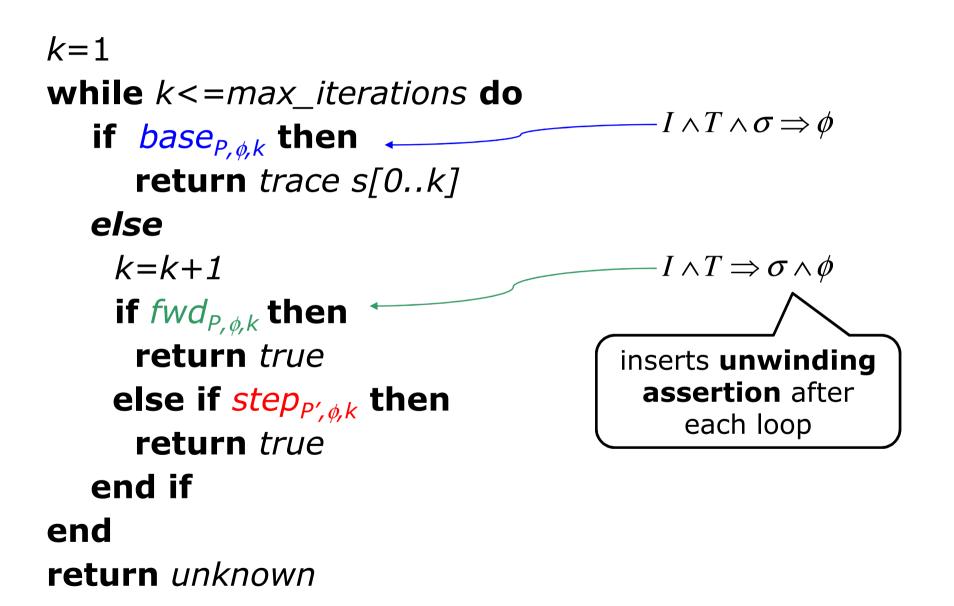
Loop-free Programs (*step_k*)

• In the inductive step, loops are converted into:

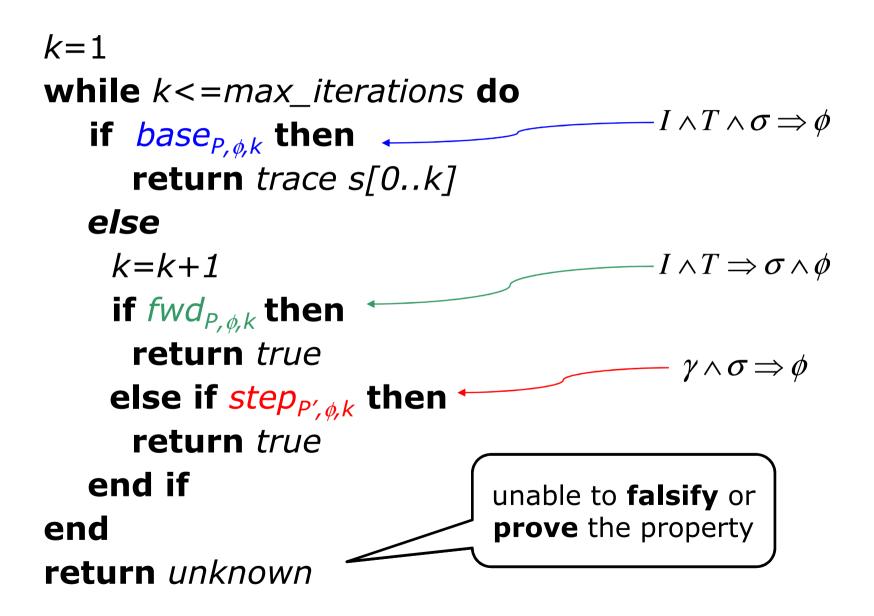
- A: assigns non-deterministic values to all loops variables (the state is havocked before the loop)
- c: is the halt condition of the loop
- S: stores the current state of the program variables before executing the statements of E
- E: is the actual code inside the loop
- U: updates all program variables with local values after executing E

k=1**while** *k*<=*max_iterations* **do** if base_{P, o,k} then **return** *trace s*[0..*k*] else k=k+1if $fwd_{P,\phi,k}$ then return true else if step_{P', ϕ, k} then return true end if end return unknown



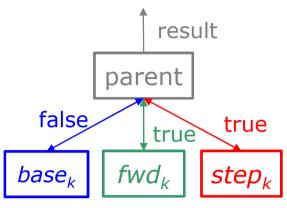






Parallel k-Induction Algorithm

- The parallel implementation consists of four different processes
 - running in different processing cores
 - splitting each step potentially divides
 the work clock-time by a factor of three



- Parent process initializes three child processes, executes the logic of the *k*-induction algorithm, and shows the verification results
 - two pipes are used in each process for the inter-process communication
- Once the solution is found, the child process communicates to the parent process, which sends signals to the other two child processes to finalize them

Running example

Prove that
$$S_n = \sum_{i=1}^n a = na$$
 for $n \ge 1$

```
int main() {
 long long int i=1, sn=0;
 unsigned int n;
 assume (n>=1);
 while(i<=n) {</pre>
  sn = sn + a;
  i++;
 }
 assert(sn==n*a);
}
```

Running example: *base case*

Insert an **unwinding assumption** consisting of the termination condition after the loop

- find a counter-example with k loop unwindings

```
int main() {
 unsigned int n=nondet_uint();
 long long int i=1, sn=0;
 assume (n \ge 1);
 if (i<=n) {
  sn = sn + a;
                      k-copies
  i++;
 assume(i>n); //unwinding assumption
 assert(sn==n*a);
}
```

Running example: forward condition

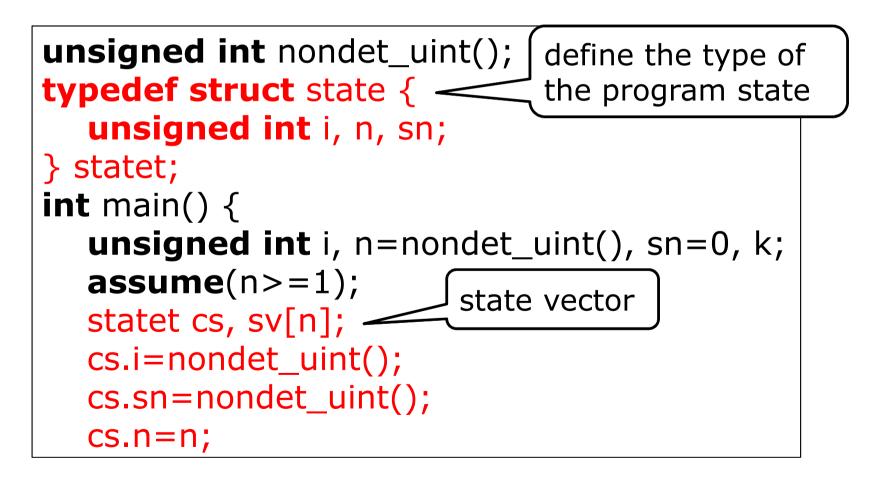
Insert an **unwinding assertion** consisting of the termination condition after the loop

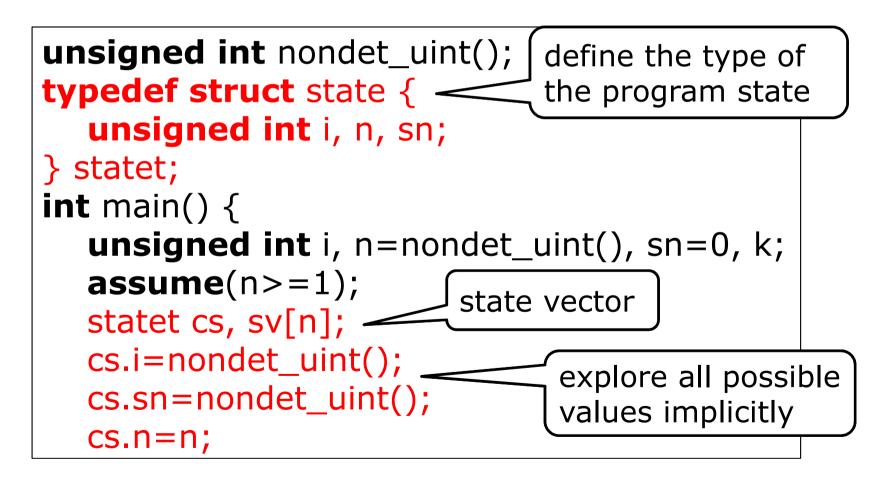
- check that P holds in all states reachable with k unwindings

```
int main() {
 unsigned int n=nondet_uint();
 long long int i=1, sn=0;
 assume (n \ge 1);
 if (i<=n) {
  sn = sn + a;
                      k-copies
  i++;
 assert(i>n); //unwinding assertion
 assert(sn==n*a);
}
```

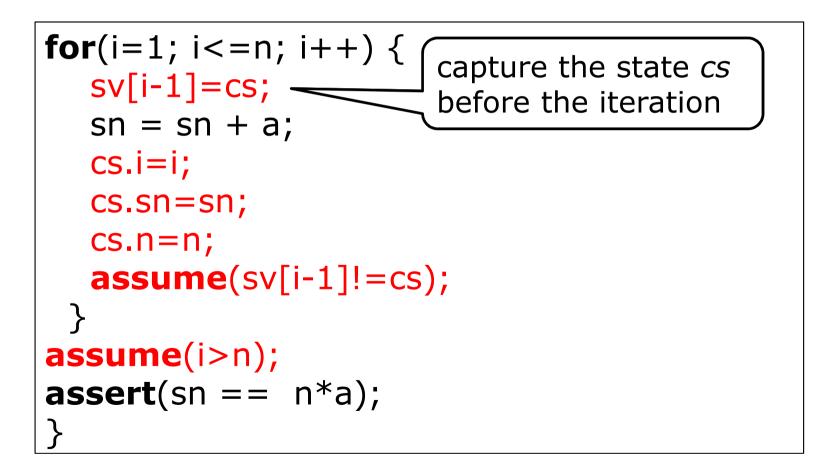
```
unsigned int nondet_uint();
typedef struct state {
  unsigned int i, n, sn;
} statet;
int main() {
  unsigned int i, n=nondet_uint(), sn=0, k;
  assume(n>=1);
  statet cs, sv[n];
  cs.i=nondet uint();
  cs.sn=nondet_uint();
  cs.n=n;
```

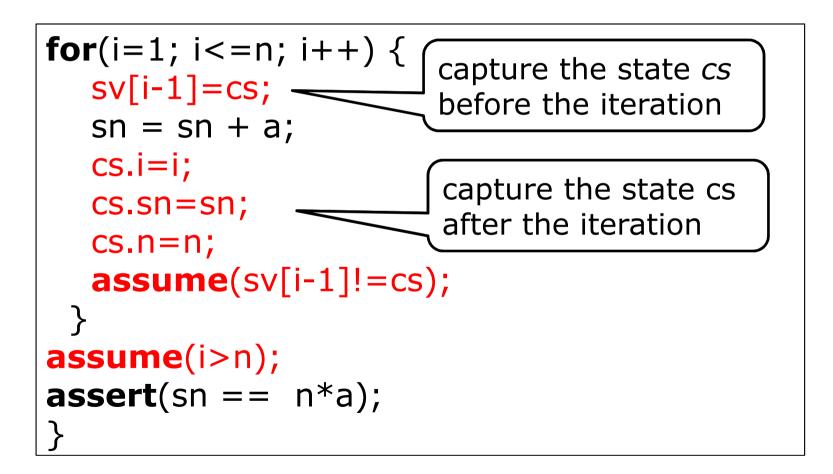
```
unsigned int nondet_uint(); |
                             define the type of
typedef struct state {
                              the program state
  unsigned int i, n, sn;
} statet;
int main() {
  unsigned int i, n=nondet_uint(), sn=0, k;
  assume(n>=1);
  statet cs, sv[n];
  cs.i=nondet uint();
  cs.sn=nondet_uint();
  cs.n=n;
```

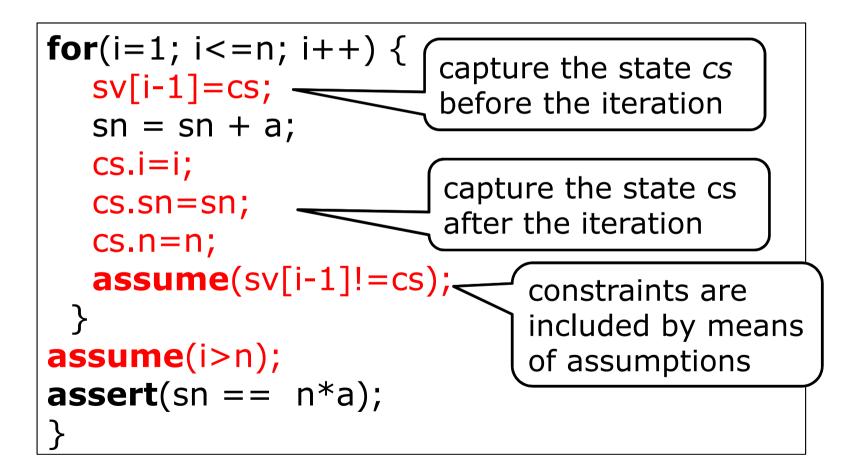


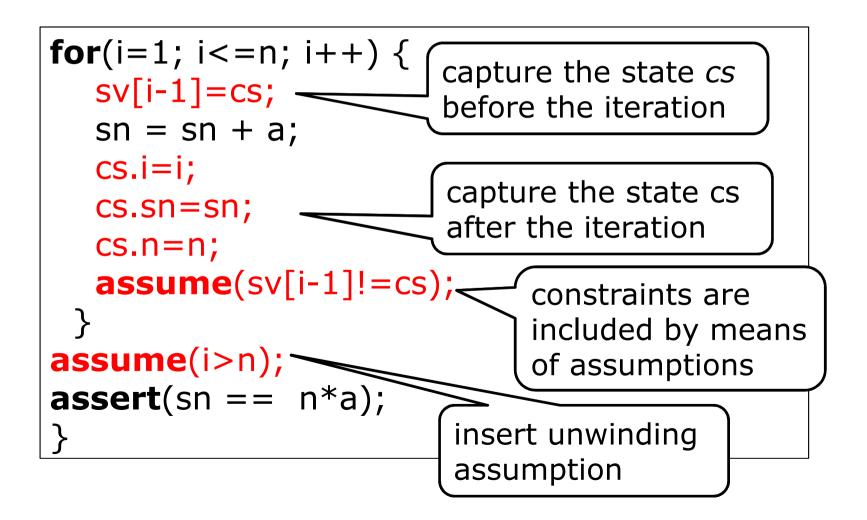


```
for(i=1; i<=n; i++) {
  sv[i-1]=cs;
  sn = sn + a;
  cs.i=i;
  cs.sn=sn;
  cs.n=n;
  assume(sv[i-1]!=cs);
 }
assume(i>n);
assert(sn == n*a);
}
```









Removing Redundant States

- An assume instruction checks whether the current state is different from the previous one
 - prevent redundant states to be inserted into the state vector

assume(sv[i-1]!=cs);

• We compare $sv_i[i]$ to cs_i for $0 < j \le k$ and $0 \le i \le k$

```
sv_{1}[0] \neq cs_{1}
sv_{1}[0] \neq cs_{1} \wedge sv_{2}[1] \neq cs_{2}
...
sv_{1}[0] \neq cs_{1} \wedge sv_{2}[1] \neq cs_{2} \wedge ... \wedge sv_{k}[i] \neq cs_{k}
```

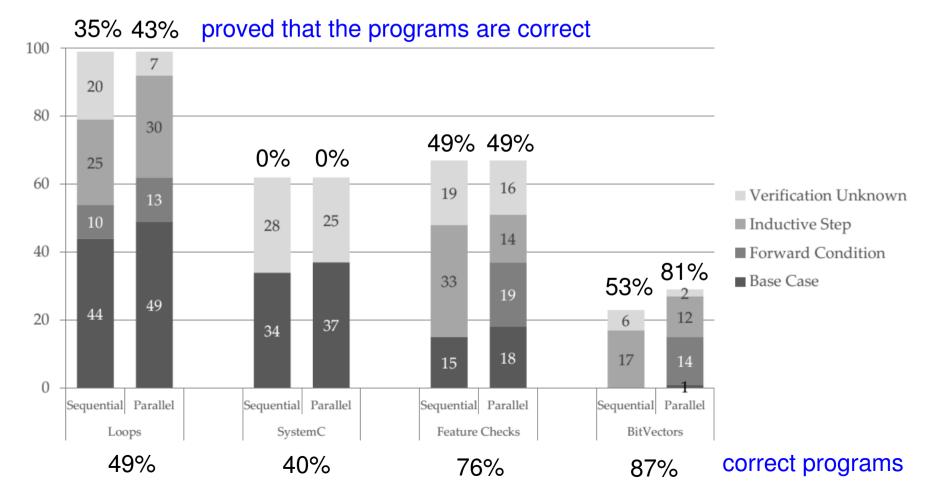
- We could compare sv_k[i] to all cs_k for i < k (since inequalities are not transitive)
 - however, the number of constraints can grow very large quickly

Experimental Evaluation

- **Goal:** evaluate the performance of the sequential and parallel implementations using the SV-COMP benchmarks
 - Loops (99 programs)
 - » 49% correct and 51% incorrect programs
 - SystemC (62 programs)
 - » 40% correct and 60% incorrect programs
 - FeatureChecks (67 programs)
 - » 76% correct and 24% incorrect programs
 - *BitVectors* (32 programs)
 - » 87% correct and 13% incorrect programs
- Set-up:
 - ESBMC v1.22 together with the SMT solver Z3 v4.0
 - support the logics QF_AUFBV and QF_AUFLIRA
 - standard desktop PC, time-out 900 seconds

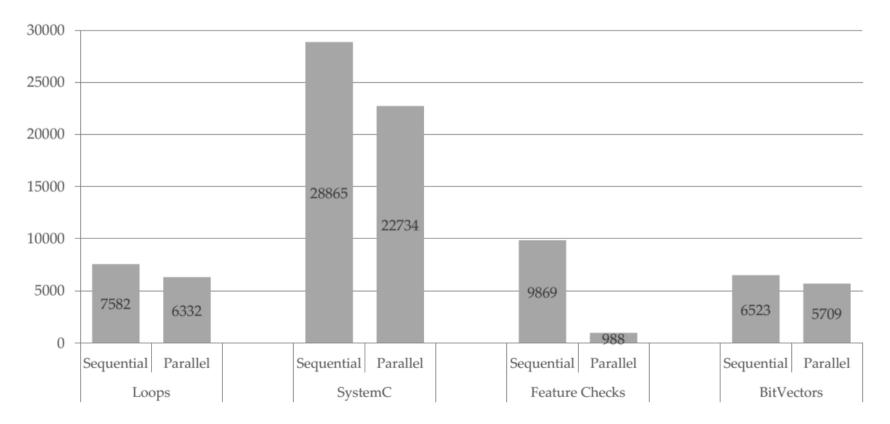
Verification Results for Each Step

- Most of **unknown** results occurred due to nested loops
 - base case produced two false alarms due to the memory model adopted by ESBMC



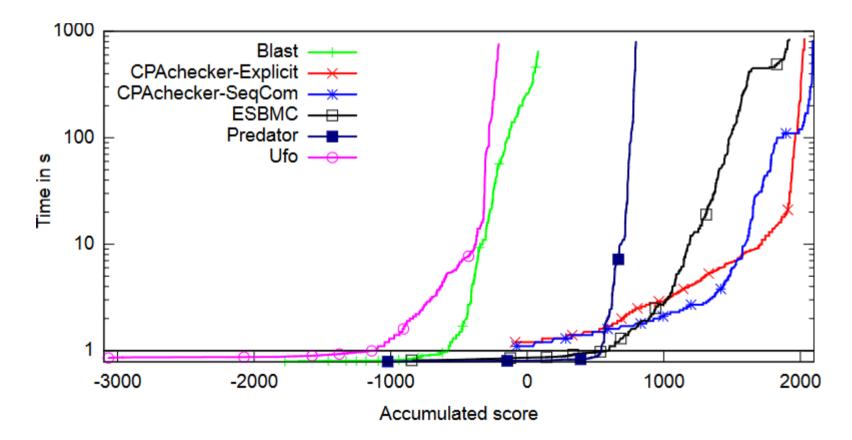
Verification Time per Category

- Sequential k-induction verifies 70% of the benchmarks in 52839 seconds, and the parallel k-induction verifies 80% in 35763 seconds
 - » speedup of 32%



SV-COMP 2013 Results – Overall Ranking

- Sequential k-induction participated in the 2nd edition of the SV-COMP
 - verify by induction that the safety property holds



> If that fails, search for a bounded reachable state

Strengths:

- robust *k*-induction algorithm for C programs
 - this marks the first application of the k-induction algorithm to a broader range of C programs
- combines plain BMC with *k*-induction
 - *k*-induction by itself is by far not as strong as plain BMC
 - \Rightarrow although it produced substantially fewer false results

Strengths:

- robust *k*-induction algorithm for C programs
 - this marks the first application of the k-induction algorithm to a broader range of C programs
- combines plain BMC with *k*-induction
 - *k*-induction by itself is by far not as strong as plain BMC

 \Rightarrow although it produced substantially fewer false results Weaknesses:

- scalability (like other BMCs...)
 - loop unrolling
 - interleavings
- investigate whether redundant constraints can be avoided
 - using the results of already completed steps
- refine invariants to strengthen the induction hypothesis