
Lucas Cordeiro

Joint work with

Jeremy Morse, Mikhail Ramalho, Herberto Rocha, Hussama

Ismail, Raimundo Barreto, Denis Nicole, and Bernd Fischer

Handling Loops in Bounded Model

Checking of C Programs

via k-Induction

Bounded Model Checking (BMC)

basic Idea: check negation of given property up to given depth

• transition system M unrolled k times

– for programs: loops, arrays, …

• translated into verification condition ψ such that

ψ satisfiable iff ϕ has counterexample of max. depth k

• has been applied successfully to verify (embedded) software

. . .

M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk

counterexample trace

∨ ∨ ∨ ∨

transition

system

property

bound

Difficulties in proving the correctness of
programs with loops in BMC

• BMC techniques can falsify properties up to a given depth k

– they can prove correctness only if an upper bound of k is

known (unwinding assertion)

» BMC tools typically fail to verify programs that contain bounded
and unbounded loops

the loop will be unfolded 2n-1 times
(in the worst case, 232-1 times on 32
bits integer)

sn=sn+a

i++

sn==n*a

4,294,967,295

loop unwindings

ESBMC: SMT-based BMC of single- and
multi-threaded software

SMT-based bounded model checker for C, based on CBMC:

• symbolically executes C into SSA, produces QF formulae

• unrolls loops up to a maximum bound k

• assertion failure iff corresponding formula is satisfiable

– safety properties (array bounds, pointer dereferences,

overflows,...)

– user-specified properties

Multi-threaded programs:

• produces one SSA program for each possible thread interleaving

• interleaves only at “visible” instructions

• optional context bound

Goal: prove that an invariant is k-inductive

Software BMC using ESBMC

• program modelled as state transition system
– state: program counter and program variables

– derived from control-flow graph

– checked safety properties give extra nodes

• program unfolded up to given bounds
– loop iterations

– context switches

• unfolded program optimized to reduce blow-up
– constant propagation

– forward substitutions

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;

else
a[i+2]=1;

assert(a[i+1]==1);
}

crucial

Software BMC using ESBMC

• program modelled as state transition system
– state: program counter and program variables

– derived from control-flow graph

– checked safety properties give extra nodes

• program unfolded up to given bounds
– loop iterations

– context switches

• unfolded program optimized to reduce blow-up
– constant propagation

– forward substitutions

• front-end converts unrolled and

optimized program into SSA

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;

else
a[i+2]=1;

assert(a[i+1]==1);
}

crucial
g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0

a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3

t1 = a4 [1+i0] == 1

Software BMC using ESBMC

• program modelled as state transition system
– state: program counter and program variables

– derived from control-flow graph

– checked safety properties give extra nodes

• program unfolded up to given bounds
– loop iterations

– context switches

• unfolded program optimized to reduce blow-up
– constant propagation

– forward substitutions

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P
– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;

else
a[i+2]=1;

assert(a[i+1]==1);
}

crucial

()

()

()






















=∧

+=∧

=∧

=∧

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+∧

<+∧≥+∧

<+∧≥+∧

<∧≥

=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

Software BMC using ESBMC

• program modelled as state transition system
– state: program counter and program variables

– derived from control-flow graph

– checked safety properties give extra nodes

• program unfolded up to given bounds
– loop iterations

– context switches

• unfolded program optimized to reduce blow-up
– constant propagation

– forward substitutions

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P
– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;

else
a[i+2]=1;

assert(a[i+1]==1);
}

crucial

()

()

()






















=∧

+=∧

=∧

=∧

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+∧

<+∧≥+∧

<+∧≥+∧

<∧≥

=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

ESBMC finds real errors in applications, but it

is susceptible to producing time-out or

memory-out for correct programs

Induction-Based Verification

k-induction checks loop-free programs...

• base case (basek): find a counter-example with up to k loop

unwindings (plain BMC)

• forward condition (fwdk): check that P holds in all states

reachable within k unwindings

• inductive step (stepk): check that whenever P holds for k

unwindings, it also holds after next unwinding

– havoc state

– run k iterations

– assume invariant

– run final iteration

⇒ iterative deepening if inconclusive

Loop-free Programs (basek and fwdk)

• A loop-free program is represented by a straight-line
program (without loops) using if-statements

for(B; c; D) { E; } B while(c) { E; D;}

L1: while(c) {

E; D;

}

L1: if(!c) goto L2

E; D;

goto L1

L2: ASSUME or ASSERT

L1: while(cond1) {

LOOP1 BODY

L2: while(cond2) {

LOOP2 BODY

}

}

L1: if(!cond1) goto L4

LOOP1 BODY

L2: if(!cond2) goto L3

LOOP2 BODY

goto L2

L3: goto L1

L4: ASSUME or ASSERT

Loop-free Programs (basek and fwdk)

• A loop-free program is represented by a straight-line
program (without loops) using if-statements

for(B; c; D) { E; } B while(c) { E; D;}

L1: while(c) {

E; D;

}

L1: if(!c) goto L2

E; D;

goto L1

L2: ASSUME or ASSERT

L1: while(cond1) {

LOOP1 BODY

L2: while(cond2) {

LOOP2 BODY

}

}

L1: if(!cond1) goto L4

LOOP1 BODY

L2: if(!cond2) goto L3

LOOP2 BODY

goto L2

L3: goto L1

L4: ASSUME or ASSERT

basek and fwdk translations can easily

be implemented on top of plain BMC

Loop-free Programs (stepk)

• In the inductive step, loops are converted into:

while(c) { E; } A while(c) { S; E; U; } R;

‒ A: assigns non-deterministic values to all loops variables

(the state is havocked before the loop)

‒ c: is the halt condition of the loop

‒ S: stores the current state of the program variables before

executing the statements of E

‒ E: is the actual code inside the loop

‒ U: updates all program variables with local values after

executing E

The k-induction algorithm

k=1

while k<=max_iterations do

if baseP,φ,k then

return trace s[0..k]

else

k=k+1

if fwdP,φ,k then

return true

else if stepP’,φ,k then

return true

end if

end

return unknown

The k-induction algorithm

k=1

while k<=max_iterations do

if baseP,φ,k then

return trace s[0..k]

else

k=k+1

if fwdP,φ,k then

return true

else if stepP’,φ,k then

return true

end if

end

return unknown

φσ ⇒∧∧TI

I : initial condition
T : transition relation of P
σ : termination condition
φ : safey property

inserts unwinding
assumption after

each loop

The k-induction algorithm

k=1

while k<=max_iterations do

if baseP,φ,k then

return trace s[0..k]

else

k=k+1

if fwdP,φ,k then

return true

else if stepP’,φ,k then

return true

end if

end

return unknown

φσ ⇒∧∧TI

φσ ∧⇒∧TI

inserts unwinding
assertion after

each loop

The k-induction algorithm

k=1

while k<=max_iterations do

if baseP,φ,k then

return trace s[0..k]

else

k=k+1

if fwdP,φ,k then

return true

else if stepP’,φ,k then

return true

end if

end

return unknown

φσ ⇒∧∧TI

φσ ∧⇒∧TI

φσγ ⇒∧

havoc variables that
occur in the loop’s

termination condition

 γ: transition relation of P’

The k-induction algorithm

k=1

while k<=max_iterations do

if baseP,φ,k then

return trace s[0..k]

else

k=k+1

if fwdP,φ,k then

return true

else if stepP’,φ,k then

return true

end if

end

return unknown

φσ ⇒∧∧TI

φσ ∧⇒∧TI

φσγ ⇒∧

unable to falsify or
prove the property

Parallel k-Induction Algorithm

• The parallel implementation consists of

four different processes

– running in different processing cores

– splitting each step potentially divides

the work clock-time by a factor of three

• Parent process initializes three child processes, executes

the logic of the k-induction algorithm, and shows the

verification results

– two pipes are used in each process for the inter-process

communication

• Once the solution is found, the child process communicates

to the parent process, which sends signals to the other two

child processes to finalize them

parent

basek fwdk stepk

false
true true

result

Running example

int main() {

long long int i=1, sn=0;

unsigned int n;

assume (n>=1);

while(i<=n) {

sn = sn + a;

i++;

}

assert(sn==n*a);

}

Prove that for n ≥ 1naaS
n

i

n ==∑
=1

Running example: base case

Insert an unwinding assumption consisting of the termination

condition after the loop

– find a counter-example with k loop unwindings

int main() {
unsigned int n=nondet_uint();
long long int i=1, sn=0;
assume (n>=1);
if (i<=n) {
sn = sn + a;
i++;

}
...
assume(i>n); //unwinding assumption
assert(sn==n*a);

}

k-copies

Running example: forward condition

Insert an unwinding assertion consisting of the termination

condition after the loop

– check that P holds in all states reachable with k unwindings

int main() {
unsigned int n=nondet_uint();
long long int i=1, sn=0;
assume (n>=1);
if (i<=n) {
sn = sn + a;
i++;

}
...

assert(i>n); //unwinding assertion

assert(sn==n*a);
}

k-copies

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;
} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, sv[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Havoc (only) the variables that occur in the loop’s termination

and branch conditions

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;
} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, sv[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Havoc (only) the variables that occur in the loop’s termination

and branch conditions

define the type of
the program state

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;
} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, sv[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Havoc (only) the variables that occur in the loop’s termination

and branch conditions

define the type of
the program state

state vector

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;
} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, sv[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Havoc (only) the variables that occur in the loop’s termination

and branch conditions

define the type of
the program state

state vector

explore all possible
values implicitly

Running example: inductive step

for(i=1; i<=n; i++) {
sv[i-1]=cs;
sn = sn + a;
cs.i=i;
cs.sn=sn;
cs.n=n;
assume(sv[i-1]!=cs);

}
assume(i>n);
assert(sn == n*a);
}

ESBMC is called to verify the assertions where the first arbitrary

state is emulated by nondeterminism

Running example: inductive step

for(i=1; i<=n; i++) {
sv[i-1]=cs;
sn = sn + a;
cs.i=i;
cs.sn=sn;
cs.n=n;
assume(sv[i-1]!=cs);

}
assume(i>n);
assert(sn == n*a);
}

ESBMC is called to verify the assertions where the first arbitrary

state is emulated by nondeterminism

capture the state cs
before the iteration

Running example: inductive step

for(i=1; i<=n; i++) {
sv[i-1]=cs;
sn = sn + a;
cs.i=i;
cs.sn=sn;
cs.n=n;
assume(sv[i-1]!=cs);

}
assume(i>n);
assert(sn == n*a);
}

ESBMC is called to verify the assertions where the first arbitrary

state is emulated by nondeterminism

capture the state cs
before the iteration

capture the state cs
after the iteration

Running example: inductive step

for(i=1; i<=n; i++) {
sv[i-1]=cs;
sn = sn + a;
cs.i=i;
cs.sn=sn;
cs.n=n;
assume(sv[i-1]!=cs);

}
assume(i>n);
assert(sn == n*a);
}

ESBMC is called to verify the assertions where the first arbitrary

state is emulated by nondeterminism

capture the state cs
before the iteration

capture the state cs
after the iteration

constraints are
included by means
of assumptions

Running example: inductive step

for(i=1; i<=n; i++) {
sv[i-1]=cs;
sn = sn + a;
cs.i=i;
cs.sn=sn;
cs.n=n;
assume(sv[i-1]!=cs);

}
assume(i>n);
assert(sn == n*a);
}

ESBMC is called to verify the assertions where the first arbitrary

state is emulated by nondeterminism

capture the state cs
before the iteration

capture the state cs
after the iteration

constraints are
included by means
of assumptions

insert unwinding
assumption

Removing Redundant States

• An assume instruction checks whether the current state is

different from the previous one

‒ prevent redundant states to be inserted into the state vector

assume(sv[i-1]!=cs);

• We compare svj[i] to csj for 0 < j ≤ k and 0 ≤ i ≤ k

• We could compare svk[i] to all csk for i < k (since inequalities
are not transitive)
‒ however, the number of constraints can grow very large quickly

sv1[0]≠ cs1

sv1[0]≠ cs1 ∧ sv2[1]≠ cs2

...

sv1[0]≠ cs1 ∧ sv2[1]≠ cs2 ∧ ... ∧ svk[i]≠ csk

Experimental Evaluation

• Goal: evaluate the performance of the sequential and

parallel implementations using the SV-COMP benchmarks

– Loops (99 programs)

» 49% correct and 51% incorrect programs

– SystemC (62 programs)

» 40% correct and 60% incorrect programs

– FeatureChecks (67 programs)

» 76% correct and 24% incorrect programs

– BitVectors (32 programs)

» 87% correct and 13% incorrect programs

• Set-up:

– ESBMC v1.22 together with the SMT solver Z3 v4.0

– support the logics QF_AUFBV and QF_AUFLIRA

– standard desktop PC, time-out 900 seconds

Verification Results for Each Step

• Most of unknown results occurred due to nested loops

− base case produced two false alarms due to the memory

model adopted by ESBMC

35% 43%

0% 0%

49%

49% 49%

40% 76% 87%

53%
81%

correct programs

proved that the programs are correct

Verification Time per Category

• Sequential k-induction verifies 70% of the benchmarks in

52839 seconds, and the parallel k-induction verifies 80% in

35763 seconds

» speedup of 32%

• Sequential k-induction participated in the 2nd edition of the

SV-COMP

‒ verify by induction that the safety property holds

» If that fails, search for a bounded reachable state

SV-COMP 2013 Results – Overall Ranking

Strengths:
• robust k-induction algorithm for C programs

‒ this marks the first application of the k-induction algorithm to a
broader range of C programs

• combines plain BMC with k-induction

– k-induction by itself is by far not as strong as plain BMC

 ⇒ although it produced substantially fewer false results

Strengths:

Weaknesses:

• scalability (like other BMCs...)

– loop unrolling

– interleavings

• investigate whether redundant constraints can be avoided

– using the results of already completed steps

• refine invariants to strengthen the induction hypothesis

• robust k-induction algorithm for C programs

‒ this marks the first application of the k-induction algorithm to a
broader range of C programs

• combines plain BMC with k-induction

– k-induction by itself is by far not as strong as plain BMC

 ⇒ although it produced substantially fewer false results

