Handling Loops in Bounded Model
Checking of C Programs
via k-Induction

Lucas Cordeiro

Joint work with
Jeremy Morse, Mikhail Ramalho, Herberto Rocha, Hussama
Ismail, Raimundo Barreto, Denis Nicole, and Bernd Fischer

S

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Bounded Model Checking (BMC)

basic Idea: check negation of given property up to given depth

4) - property
P v TP v TP v Tk |V O
transition O > O >0 ... O—}—o0
system - My M, M, M, Mk‘\\
_counterexample trace y bound

« transition system M unrolled k times
— for programs: loops, arrays, ...
 translated into verification condition y such that

y satisfiable iff ¢ has counterexample of max. depth k

* has been applied successfully to verify (embedded) software

Difficulties in proving the correctness of
programs with loops in BMC

« BMC techniques can falsify properties up to a given depth k

— they can prove correctness only if an upper bound of kis
known (unwinding assertion)

» BMC tools typically fail to verify programs that contain bounded
and unbounded loops
4,294,967,295

n start —:- loop unwindings
,5'”:2{1.:?1(1,?121 ‘

i=1 n>1
Gﬂmpute E-ID (ncrement)
. . sn=sn+a =
the loop will be unfolded 2" times J i >n

(in the worst case, 2321 times on 32 _
bits integer)

sn==n%*a

ESBMC: SMT-based BMC of single- and
multi-threaded software

SMT-E{ Goal: prove that an invariant is k-inductive 1” CBMC:

. symbolicaWinto SSA, produces QF formulae

 unrolls loops up to a maximum bound k

 assertion failure iff corresponding formula is satisfiable

— safety properties (array bounds, pointer dereferences,
overflows,...)

— user-specified properties
Multi-threaded programs:
« produces one SSA program for each possible thread interleaving
* interleaves only at “visible” instructions

 optional context bound

Software BMC using ESBMC

* program modelled as state transition system int main() {
— state: program counter and program variables et 22l 1 x;

if (x==0)
— derived from control-flow graph a[i]=0;
— checked safety properties give extra nodes eLS[?+2]=1-
« program unfolded up to given bounds assert(a[i+1]==1);
— loop iterations ’
— context switches 1
 unfolded program optimized to reduce blow-up
— constant propagation . L .
— forward substitutions } crucil g h

Software BMC using ESBMC

« program modelled as state transition system int main() {

— state: program counter and program variables :?Exaizz]é)i’ X

— derived from control-flow graph a[i]=0;

— checked safety properties give extra nodes eLS[?+2]=1-
« program unfolded up to given bounds assert(a[i+1]==1);

— loop iterations ’

— context switches 1
 unfolded program optimized to reduce blow-up

— constant propagation _ g,=%x,==0

— forward substitutions } crucial 27 % WITH [io:=0]
 front-end converts unrolled and a5 = a, WITH [2+ig:=1]

optimized program into SSA AR

Software BMC using ESBMC

* program modelled as state transition system int main() {
— state: program counter and program variables et 22l 1 x;

if (x==0)
— derived from control-flow graph a[i]=0;
— checked safety properties give extra nodes eLS[?+2]=1-
« program unfolded up to given bounds assert(a[i+1]==1);
— loop iterations ;
— context switches 1
« unfolded program optimized to reduce blow-up
— constant propagation } .)
e crucial !
— forward substitutions Ci=|na,=a, |
. front-end converts unrolled and o)
optimized program into SSA iy 20A7, <2
+ extraction of constraints C and properties P 7=\, ffﬁfff}
— specific to selected SMT solver, uses theories Lrsekectlai+1)=1

- satisfiability check of C A =P

Software BMC using ESBMC

« program modelled as state transition system int main() {

_ : int a[2], i, x;
— State: program counter and program variables (x==

0)
— derived from control-flow graph a[i]=0;
— checked safety properties give extra nodes eLS[?+2]=1-
* prog ! ali+1]==1);

— Ig ESBMC finds real errors in applications, but it
— C{ Is susceptible to producing time-out or
. unfOk memory-out for correct programs

— constant propagation jL _
e crucial
— forward substitutions (|
Aay = storela,,2 +iy,1

 front-end converts unrolled and nay=ite(gana) |
optimized program into SSA iy 20A7, <2

A2+iy 20A2+i,<2

 extraction of constraints C and properties P 7=, .. son14i <2
— specific to selected SMT solver, uses theories Lrsekectlai+1)=1

- satisfiability check of C A =P

4 0)

Aa, = store(a,,iy,0)

C=|Aa,=aq,

Induction-Based Verification

k-induction checks loop-free programs...

- base case (base,): find a counter-example with up to k loop
unwindings (plain BMC)

« forward condition (fwd,): check that P holds in all states
reachable within kK unwindings

 Inductive step (step,): check that whenever P holds for k
unwindings, it also holds after next unwinding

— havoc state

— run K iterations
— assume invariant
— run final iteration

= Iterative deepening if inconclusive

Loop-free Programs (base, and fwd,)

« A loop-free program is represented by a straight-line
program (without loops) using if-statements

for(B; c; D) { E; } HEEE) B while(c) { E; D;}

///

. = |
L1: while (c) ({ Ll: if(!c) goto L2

E; D; ‘ 57 Di

goto L1
L2: ASSUME or ASSERT

Ll: if(!condl) goto L4

Ll: while (condl) { LOOP1 BODY
LOOP1 BODY L2: if (!cond2) goto L3
12: while(cond2) | o) LOOP2 BODY
LOOP2 BODY goto L2
} L3: goto L1

} L4: ASSUME or ASSERT

Loop-free Programs (base, and fwd,)

« A loop-free program is represented by a straight-line
program (without loops) using if-statements

for(B; c; D) { E;)} MEE) B while(c) { E; D;}

I

11| base, and fwd, translations can easily
be implemented on top of plain BMC

TZ: ASOUME Or LooblRT

Ll: if(!condl) goto L4

Ll: while (condl) { LOOP1 BODY
LOOP1 BODY L2: if (!cond2) goto L3
12: while(cond2) | o) LOOP2 BODY
LOOP2 BODY goto L2
} L3: goto L1

} L4: ASSUME or ASSERT

Loop-free Programs (step,)

 In the inductive step, loops are converted into:

while (c¢) { E; } mmm) A while(c) { S; E; U; } R;

— A: assigns non-deterministic values to all loops variables
(the state is havocked before the loop)

— c: is the halt condition of the loop

— S: stores the current state of the program variables before
executing the statements of E

— E: is the actual code inside the loop

— U: updates all program variables with local values after
executing E

The k-induction algorithm

k=1
while k<=max_iterations do
if base, ,, then
return trace s/[0..k]
else
k=k+1
if fwd, ,, then
return true
else if step,. ,, then
return true
end if
end
return unknown

I : initial condition

T : transition relation of P
o . termination condition
¢ . safey property

The k-induction algorith

k=1

~

J

while k<=max_iterations do
if base, ,, then . —irTro=9
return trace s/[0..k]

else inserts unwinding
assumption after
k=k+1 each loop

if fwd, ,, then
return true
else if step,. ,, then
return true
end if
end
return unknown

The k-induction algorithm

k=1
while k<=max_iterations do
if base, ,, then . —irTro=9
return trace s/[0..k]

else
k=k+1 /IAT:GA¢
if fwd, ,, then
return true inserts unwinding
else if 5tepp',¢,/< then assertion after
each loop
return true
end if
end

return unknown

The k-induction algorithm

k=1
while k<=max_iterations do
if base,,, then . IrTro=y
return trace s/[0..k]
else
k=k+1
if fwd, ,, then
return true
else if step,. ,, then
return true

v: transition relation of P’ }

<_”_’/””—7//\0-:>¢

end if havoc v_arlables t’hat
occur in the loop’s
end termination condition

return unknown

The k-induction algorithm

k=1
while k<=max_iterations do
if base, ,, then . —IirTro=9
return trace s/[0..k]
else

k=k+1 /IAT:GA¢
if fwd, ,, then

return true
else if step,. ,, then
return true

end if unable to falsify or
end prove the property
—\

return unknown

Parallel k-Induction Algorithm

I result

* The pa}rallel implementation consists of parent
four different processes
. . fmue
— running in different processing cores

base, | | fwd, | | step,

— splitting each step potentially divides
the work clock-time by a factor of three

« Parent process initializes three child processes, executes
the logic of the k-induction algorithm, and shows the
verification results

— two pipes are used in each process for the inter-process
communication

* Once the solution is found, the child process communicates
to the parent process, which sends signals to the other two
child processes to finalize them

Running example

Prove that §, =Za =na forn=>1

i=1

int main() {

long long int i=1, sn=0;
unsigned int n;
assume (n>=1);
while(i<=n) {

sn = sn + a;

I++;
by

assert(sn==n%*a);

)

Running example: base case

Insert an unwinding assumption consisting of the termination
condition after the loop

— find a counter-example with kloop unwindings

int main() {
unsigned int n=nondet_uint();
long long int i=1, sn=0;
assume (n>=1);
if (i<=n){
sn = sn + a;
I+

} _

—— k-copies

assume(i>n); //unwinding assumption
assert(sn==n%*a);

»

Running example: forward condition

Insert an unwinding assertion consisting of the termination
condition after the loop

— check that P holds in all states reachable with k unwindings

int main() {
unsigned int n=nondet_uint();
long long int i=1, sn=0;
assume (n>=1);
if (i<=n){)
sn = sn + a;
I++;

} _

~—— k-copies

assert(i>n); //unwinding assertion
assert(sn==n%*a);

»

Running example: inductive step

Havoc (only) the variables that occur in the loop’s termination
and branch conditions

unsigned int nondet_uint();

typedef struct state {
unsigned int i, n, sn;

} statet;

int main() {
unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, sv[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Running example: inductive step

Havoc (only) the variables that occur in the loop’s termination
and branch conditions

unsigned int nondet_uint(); | define the type of
typedef struct state { the program state

unsigned int i, n, sn;
} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;

assume(n>=1);

statet cs, sv[n];

cs.i=nondet_uint();

cs.sn=nondet_uint();

cs.n=n;

Running example: inductive step

Havoc (only) the variables that occur in the loop’s termination
and branch conditions

unsigned int nondet_uint(); | define the type of
typedef struct state { the program state

unsigned int i, n, sn;
} statet;
int main() {
unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, sv[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

state vector]

Running example: inductive step

Havoc (only) the variables that occur in the loop’s termination
and branch conditions

unsigned int nondet_uint(); | define the type of
typedef struct state { the program state]
unsigned int i, n, sn;
} statet;
int main() {
unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);
statet cs, sv[n];
cs.i=nondet_uint(); ____—r J

state vector]

. _ explore all possible
cs.sn=nondet_uint(); Lvalues implicitly
cs.n=n;

Running example: inductive step

ESBMC is called to verify the assertions where the first arbitrary
state is emulated by nondeterminism

for(i=1; i<=n; i++) <
sv[i-1]=cs;
sn = sn + a;
CS.i=I;
CS.SN=sn;
cs.n=n;
assume(sv[i-1]!'=cs);
by
assume(i>n);
assert(sn == n*a);

y

Running example: inductive step

ESBMC is called to verify the assertions where the first arbitrary
state is emulated by nondeterminism

fors(\l,fi%i]lzgs?')R (capture the state cs]
&N = sn + a;\\before the iteration
CS.i=l;
cs.sn=sn;
cs.n=n;
assume(sv[i-1]l=cs);
b
assume(i>n);
assert(sn == n*a);

y

Running example: inductive step

ESBMC is called to verify the assertions where the first arbitrary
state is emulated by nondeterminism

for(i=1; i<=n; i++) { (capture the state cs

sv[i-1]=cs; , . .]
! before the iteration
sn = sn + a;\\

CS.i=I;
(capture the state cs]

E:in:_ns,'n, \'\after the iteration
assume(sv[i-1]!'=cs);
by
assume(i>n);
assert(sn == n*a);

y

Running example: inductive step

ESBMC is called to verify the assertions where the first arbitrary
state is emulated by nondeterminism

1 oo
fors(\l/[i%:ll]l—csl?’ I++) { (capture the state cs]
— Loy before the iteration
SN = sSN + a,\\

CS.i=l;
cs.sn=sn; (capture the state cs]
cs.n=n; ——— after the iteration
assume(sv[i-1]1=cs); constraints are
; . included by means
assume(i>n); of assumptions
assert(sn == n*a);

y

Running example: inductive step

ESBMC is called to verify the assertions where the first arbitrary
state is emulated by nondeterminism

fOl‘('T'%;;L]Ifq?;)1 (capture the state cs
SV[I-1]=¢Cs; ——— before the iteration

sn = sn + a;

CS.i=l;
cs.sn=sn: (capture the state cs]
cs.n=n: ————— after the iteration
assume(sv[i-1]1=cs); constraints are
; . included by means
assume(i>n); of assumptions

assert(sn == n*a);

> mnwinding
Lassumption

Removing Redundant States

 An assume instruction checks whether the current state is
different from the previous one

— prevent redundant states to be inserted into the state vector

assume (sv[i-1]!=cs);

» We compare svjijto cs;for 0 <j<kand 0 <i <k

sv,[0]# cs;

sv,[0]# cs; A sv,[1]# cCs,
sv,[0]# cs; A sv,[1]# cs, A ... A SV, [1]# Cs,
» We could compare sv,[ijto all cs, for i < k (since inequalities

are not transitive)
— however, the number of constraints can grow very large quickly

Experimental Evaluation

« Goal: evaluate the performance of the sequential and
parallel implementations using the SV-COMP benchmarks

— Loops (99 programs)
» 49% correct and 51% incorrect programs
— SystemC (62 programs)
» 40% correct and 60% incorrect programs
— FeatureChecks (67 programs)
» 76% correct and 24% incorrect programs
— BitVectors (32 programs)
» 87% correct and 13% incorrect programs
« Set-up:
— ESBMC v1.22 together with the SMT solver Z3 v4.0
— support the logics QF AUFBV and QF _AUFLIRA
— standard desktop PC, time-out 900 seconds

Verification Results for Each Step

« Most of unknown results occurred due to nested loops

— base case produced two false alarms due to the memory
model adopted by ESBMC

, 35% 43% proved that the programs are correct
1(

7
20
80 +— —
- 49% 49%
(o] (o]
25 0% 0%
60 — — — 16 o
19 Verification Unknown
Inductive Step
40 M Forward Condition
(o]
530/0 812/0 W Base Case
20 6 — 12 —
17
Sequential| Parallel
Loops SystemC Feature Checks BitVectors

49% 40% 76% 87% correct programs

Verification Time per Category

» Sequential k-induction verifies 70% of the benchmarks in
52839 seconds, and the parallel k-induction verifies 80% in
35763 seconds

» speedup of 32%

30000

25000

20000

15000

10000

5000 -

0 4

Sequential| Parallel Sequential | Parallel Sequential | Parallel Sequential | Parallel

Loops

SV-COMP 2013 Results — Overall Ranking

« Sequential k-induction participated in the 2"9 edition of the
SV-COMP

— verify by induction that the safety property holds

» |f that fails, search for a bounded reachable state

1000 ¢

- Blast
- CPAchecker-Explicit —<«—
- CPAchecker-SeqCom —s«—
I ESBMC —5—
100 | Predator —m—
) - Ufo :
L
@
£
|_
10 |
1 =1 — _ﬁ__- ="
-3000 -2000 -

Accumulated score

Strengths:

 robust k-induction algorithm for C programs

— this marks the first application of the k-induction algorithm to a
broader range of C programs

« combines plain BMC with k-induction
— k-induction by itself is by far not as strong as plain BMC
= although it produced substantially fewer false results

Strengths:

 robust k-induction algorithm for C programs

— this marks the first application of the k-induction algorithm to a
broader range of C programs

« combines plain BMC with k-induction
— k-induction by itself is by far not as strong as plain BMC
= although it produced substantially fewer false results

Weaknesses:

 scalability (like other BMCs...)
— loop unrolling
— Interleavings

 Investigate whether redundant constraints can be avoided
— using the results of already completed steps

 refine invariants to strengthen the induction hypothesis

