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Abstract Digital controllers have several advantages with 
respect to their flexibility and design’s simplicity. However, they 
are subject to problems that are not faced by analog controllers. In 
particular, these problems are related to the finite word-length 
implementation that might lead to overflows, limit cycles, and time 
constraints in fixed-point or floating-point processors. This paper 
proposes a new method to detect design’s errors in fixed-point 
digital controllers using a state-of-the art bounded model checker 
based on satisfiability modulo theories. The experiments with a 
commercial industrial plant demonstrate that the proposed 
method can be effective in finding errors in digital controllers than 
other existing approaches, which are based on traditional 
simulations tools. The verification results are conclusive in 93.5% 
of the benchmarks, determining the absence or occurrence of 
errors. 
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I. INTRODUCTION 

Nowadays, almost all control systems are implemented in 
computational structures, which increase the applications of 
digital controllers. Digital controllers have improved the 
flexibility of control algorithms, since a controller may be 
implemented with different software variations using the same 
hardware structure; this reduces the design time and 
consequently simplifies the design process. In this respect, digital 
controller designers do not exploit all the computer 
implementation advantages if they only reproduce the traditional 
analog techniques (e.g., PID and lag/lead control) in a computer-
based system [1]. To achieve the best advantages of 
computational implementation, the computer-controlled system 
must exploit all digital control techniques. However, this might 
lead to problems related to finite word-length realizations, which 
represent an important area of research in the control system 
community. 

Digital controllers are typically implemented in micro-
computers, microprocessors, or digital signal processors. Any 
digital computer with a data acquisition system and an operating 
system can be used to implement a digital controller. These 
implementations might use fixed-point or floating-point 
arithmetic. Since floating-point implementation has a greater 
number of representable values and consequently reduced errors, 
the fixed-point processors are the fastest and cheapest and 
consequently, they are more common in practice. In this context, 
problems (i.e., quantization and overflow errors) caused by finite 
word-length have greater dimensions in the computer-controlled 
systems; they are thus subjects to problems that only occur in 
digital controller realizations. These problems would be fixed or 
at least reduced according to the chosen computational structure 
(e.g., direct forms), which would increase or decrease the number 
of arithmetical operations and quantizations effects. 

Additionally, there is another major problem that might 
occur in digital controller realizations, which is related to time 

constraints. Digital controllers are strictly real-time systems. 
The controls tasks execution cannot take more time than a 
sample period, which is chosen by the control engineer. Hence, 
the controller’s implementation must consider the code 
execution time and the sample time requirements. In principle, 
control engineers are aware about these problems, but they 
frequently use simulation tools to validate their controllers and 
to check whether the desired performance is achieved. However, 
most simulation tools, e.g., PSIM [2], LABVIEW [3], and 
MATLAB [4] are based on floating-point arithmetic and thus 
ignore all problems that might occur in fixed-point 
implementations. There are some tools that simulate fixed-point 
systems, but they show poor results since they neither cover all 
possible scenarios nor check time constraints [5]. 

An example of simulation tool is proposed by Sung and Kum, 
where an algorithm is developed to determine the minimum 
bound of the word-length fixed-point representation via 
simulation methods [6]. However, as other simulation tools, it 
cannot explore all possible scenarios and thus problems might go 
unnoticed. An interesting work is presented by Anta et al. [7], 
where a tool called Costan is developed. Costan finds errors in 
implementation of a mathematical model and verifies whether 
the error is tolerated, considering the quantization effect and 
fixed-point implementation; the authors focus their analysis on 
the stability of the system only. In particular, Costan verifies the 
C implementation of the controller and checks the maximum 
possible error between the C model and the SIMULINK model 
of the controller via a symbolic error analysis. Some recent work 
uses a formal verification methodology based on bounded model 
checking (BMC) with satisfiability modulo theory (SMT) 
solvers. Cox et al. show that simulations tools are useful, but 
insufficient [8], [9]; the authors propose the use of an SMT-based 
BMC to verify digital filters. Most recently, Abreu et al. verify 
various types of digital filters properties (e.g., overflows, limit 
cycles, times constrains, stability, and frequency response) using 
a state-of-the-art BMC tool, called ESBMC (Efficient SMT-
based Bounded Model Checking) [10]. 

In this paper, digital controllers’ implementations are 
verified using an SMT-based BMC approach; similar to Cox et 
al. and Abreu et al. [8], [10], [11]. A digital controller can be 
seen as a form of filter, but in digital controllers all actions must 
happen in real-time and it differentiates our work from others 
[8], [11]. Additionally, this is the first work uses model checking 
to design and validate digital controllers. In particular, the 
proposed method checks for overflows (using different 
realization structures of digital controllers), limit cycles, 
stability, and time constraints in addition to help the control 
engineer determine the most optimized word-length in fixed-
point implementations of digital filters. The proposed method is 
validated using different digital controllers for a ball and beam 
industrial plant. 



II. BACKGROUND  

This section describes implementation problems caused by 
the use of fixed-point arithmetic. The satisfiability modulo 
theory and BMC concepts are also addressed here.  

A. Fixed-Point Digital Controllers Implementation 

A digital controller is a linear time-invariant causal discrete-
time dynamic system [10]. A digital controller manipulates 
discrete numerical signals and its implementation is a program 
executed by a microprocessor. There are many ways to 
implement a digital controller in software; the controller 
realization significantly influences its performance in practice. 
Different realizations of digital controllers are studied in several 
books [12] - [13]. In this work, however, only direct forms 
implementations are considered.  

In particular, a quantizer approximates a signal value by a 
value from a discrete finite set, generating a rounding error, 
whose maximum value is considered as 2����, where � is the 
number of bits of the fractional part. The quantization in the finite 
word-length operations often causes periodic oscillations known 
as limit cycles, which are caused by round-off errors in 
multiplication and overflow errors in addition [14]. 

The overflow occurs when a sum or product is outside the 
range of representable values. There are two main ways of 
handling overflow: wrap-around and saturation. The first way 
ignores the overflow, allowing the numerical representation of a 
result to be greater than a maximum representable value to be 
stored with the least significant bits (i.e., it wraps). The second 
way holds the maximum representation value when overflow 
occurs [5]. All these problems are known as finite word-length 
(FWL) effects; a realistic model of a FWL system must include 
the quantization of every numerical value, including arithmetic 
results, input signals, and system coefficients. 

The typical fixed-point representation uses two-complement 
to represent signed binary values. A standard representation of a 
fixed point number is < �,�> , where � represents the number 
of bits of the integer part and � represents the number of bits of 
the fractional part. The most significant bit is the sign bit; 
therefore, the representable range of values is between 2��� −
2�� and − 2���.  

Naturally, the FWL effects are more present in fixed-point 
than in floating-point implementations. There are several 
approaches that aim to minimize these effects in fixed-point 
processors. However, traditional tools for simulation and testing 
do not appear to be sufficient in validation of fixed-point digital 
controllers’ implementation, because they explore only a limited 
number of scenarios and values. Moreover, controller designers 
usually adopt floating-point tools to evaluate their projects, 
which have the potential to let some failures go unnoticed. As a 
result, one can argue that detecting problems caused by fixed-
point implementations of digital controllers is a challenge that 
deserves a formal verification method. 

B. SMT-Based Bounded Model Checking 

The basic idea of BMC is to check (the negation of) a given 
property at a given depth. Supposing a transition system M, a 
property �  and a bound �, BMC unrolls the system � times and 
translates it into a verification condition (VC) � , in such a way 

that �  is satisfiable if and only if ϕ has a counterexample, of 
depth less than or equal to k; standard SMT solvers can be used 
to check whether �  is satisfiable. 

In BMC of digital controllers, the bound k limits the number 
of loop iterations and recursive calls in the controller 
implementation. BMC thus generates VCs that reflect the exact 
path in which a statement is executed, the context in which a 
given function is called, and the bit-accurate representation of 
expressions [15]. Here, the ESBMC tool is used as a verification 
engine, since it represents one of the most efficient BMC tools 
that participated in the last software verification competitions, 
[16], [17]. 

In particular, ESBMC is a context-bounded model checker 
for C/C++ programs based on SMT solvers. It allows the 
verification engineer to verify single- and multi-threaded 
software (with shared variables and locks); to reason about 
arithmetic under- and overflow, pointer safety, memory leaks, 
array bounds, atomicity and order violations, deadlock, and data 
race. ESBMC also verifies programs that make use of bit-level, 
pointers, structs, unions, and fixed-point arithmetic. In ESBMC, 
the associated SMT-based BMC problem is formulated by 
constructing the following logical formula 

ψ� = �(��)∧ ⋁ ⋀ ����,�����
���
���

�
��� ∧ �(��)�������,  (3) 

where �  is a safety property (e.g., overflow), I is the set of initial 
states of �, and γ�s�,s���� is the transition relation of � between 

time steps � and �+ 1. Hence, I(s�)∧ ⋀ γ�s�,s����
���
���  represents 

the executions of a transition system � of length �. The above 
VC ��  can be satisfied if and only if, for some �≤ �, there exists 
a reachable state, at time step �, in which �  is violated. If 
Equation (3) is satisfiable, then the SMT solver provides a 
satisfying assignment, from which the values of the controller 
variables can be extracted, in order to construct a 
counterexample. The latter, for a property ϕ , is then defined as a 
sequence of states s�,s�,… ,s� with s� ∈  S�, s� ∈ S and 
γ(s�,s���), for 0 ≤ i< �; and this can be used to reproduce the 
error in traditional simulation-based tools. If Equation (3) is 
unsatisfiable, then one can concluded that there is no error state 
in � steps or less. 

III. VERIFICATION OF DIGITAL CONTROLLERS 

To explain the verification of digital controllers, the ball and 
beam discrete model is used as a running example [18]- [19]. The 
digital controllers for a Quanser’s ball and beam plant with 
SRV02 actuator set are properly designed; all plant parameters 
and mathematical models are extracted from user manuals. 

As a first step, controllers can be designed through different 
techniques, e.g., emulation, Ragazzini, Truxal, and discretization 
[10], [12], [20]. Secondly, after designing the controllers, their 
behaviors can then be simulated in SIMULINK, which is part of 
the MATLAB toolset [4]. Here, the closed-loop responses are 
verified from simulations to check the step-response of the 
system; when necessary, other types of testing signals (e.g., ramp 
or parable) are also applied to the control system. Thirdly, after 
the simulation, the output range for a specific input is estimated, 
and the word-length of the fixed-point representation is chosen. 
Fourthly, once the word-length and the transfer function of the 
controller are obtained, the digital controller is then implemented 



in a C model for a specific fixed-point microprocessor 
architecture with a known clock time; it allows the analysis of 
the digital controller behavior in the time domain. The final step 
of the proposed method consists of verifying the properties. 
Therefore, assertions are inserted into the C model of the 
controller to check for four particular properties: overflow, limit 
cycle, stability, and time constraint. The verification of these 
properties are carried out by the verification engine, which 
checks the implementation of the controller according to its 
specification, even if the properties (extracted from the 
specification) do not require an exhaustive checking via non-
deterministic inputs [11]. 

The verification engine aids the control engineer to optimize 
their controllers’ implementation; in particular, it helps them 
choose the sample time, quantization range, word-length, and 
implementation structure. When a property violation is detected, 
the control engineer fixes the identified problem in the 
controller’s design. As an example, when an overflow occurs, an 
output error violation will occur too, and the engineer must 
perform a new verification with the same controller (and the 
same poles and zeros positions), but with a reduced gain or with 
a larger word-length. However, if a time constrain violation is 
detected, the engineer must reduce the word-length and if the 
problem persists, the controller has to be redesigned with a lower 
complexity or with a greater sample time, in case it does not 
affect the system stability. Model checking digital controllers is 
thus an interactive process, whereby the engineer should fit the 
controller mathematical representation to the given 
microprocessor architecture, finding the optimal fixed-point 
representation, and thus avoiding implementation problems, 
which are typically met in the physical implementation and 
whose causes are hard to be detected. 

A. Arithmetic Overflow Verification 

The arithmetic overflow verification without a computational 
tool is a very challenging task; BMC tools appear to be a good 
solution for this. In this work, the quantizer C code contains 
assertions and ESBMC is thus configured to detect overflows in 
a digital controller with a specific fixed-point word-length via the 
application of non-deterministic inputs to the already quantized 
mathematical model. For any addition or multiplication results, 
during controller operation, if there exists a value that exceeds 
the range representable by the fixed-point, a VC detects it as an 
overflow violation. Here, a literal ��������� is generated in order 
to represent the validity of each addition and multiplication 
operation, according to the following constraint 

��������� ⇔ (��� ≤ ��)∧ (�� ≤ ���),  (4) 

where FP is the fixed-point representation for the result of the 
adders and multipliers after the quantization, and MIN and MAX 
are, respectively, the minimum and maximum values of the 
representable range for the given fixed-point bit format. A failed 
overflow verification example is shown in Table 1. Here, a 
controller (see test case 9 of Table 3) is verified with the DFI 
realization. The fixed-point representation format is < 4,11 >  

and the input range is [-6,6]. However, the sequence of inputs in 
Table 1 leads the output to a number that is greater than the 
representable limit, thus occurring the overflow. The verification 
engine indicates that failure and gives as counterexample the 
sequence of inputs shown in Table 1, which can be easily 
reproduced using the difference equation to compute outputs 
values; note that this particular defect may go unnoticed by 
simulation tools (e.g., Matlab) unless one knows the exact input 
sequence that leads to the overflow, which is infeasible in 
practice. 

B. Limit Cycle Verification 

The steady state response of a control system is the portion 
of total response that remains after the transient effect becomes 
insignificant [21]. In this way, the step response of a stable 
control system should be a constant value after a certain time. 
However, when the limit cycle occurs, it is not necessarily true. 
The limit cycle phenomenon consists in the presence of 
oscillations occurring in the output, even when the input 
sequence is a constant value [14]. These oscillations may be very 
harming to the control systems, because they may cause damages 
to the physical plant (especially in mechanical systems) and then 
harm surround products [22]. 

To verify the limit cycle occurrence in a digital controller, the 
quantization process wraps around when the overflow occurs. 
Thus, the verification engine does not detect overflow failures. 
For the limit cycles test, the verification engine is configured to 
input a zero sequence and initialize the system with a non-
deterministic initial state. A verification condition is then added 
to detect the limit cycle failure, i.e., it detects a failure if a 
sequence of outputs states are repeated during the zero inputs 
sequence. 

An example of failure in limit cycle verification is shown in 
Fig. 1. This is a digital controller (see the test case 11 in Table 3) 
in DFI realization, with output range of [− 4,4] and with fixed-
point representation < 2,13 > . The verification engine checks 
the failure occurrence and gives the following counterexample: 
if the system receives a zero sequence, following a {2,2,2,2} 
sequence of past outputs, the limit cycle will occur, as shown in 
Fig. 1. In this graph, a simulation with 2 seconds of duration is 
shown, reproducing the counterexample provided by the 
verification engine. 

C. Time Constrains Verification 

The sample time is a very important parameter to be chosen 
in a digital control system. In particular, all the system’s dynamic 
is changed with a modification in the sample time. A precise 
selection of sample period is thus essential for a computer-
controlled system. On the one hand, too short sample times 
require a greater performance and consequently processors with 

n 1 2 3 4 5 
�(�) 6.0000 5.9990 −5.9990 6.0000 5.9995 
�(�) 0.6 − 1.6801 2.5025 −4.3369 12.1032 

Table 1. Overflow failure example 

Fig. 1. Limit Cycle in a Digital Controller 



a high clock frequency; this can impose technical limitation in 
the design of the digital controller. On the other hand, too long 
sample times do not permit the reconstruction of continuous 
signals [12]. In principle, the sample time choice depends on the 
physical plant, where the control system is applied. The right 
choice of the computational implementation of a controller may 
thus reduce the number of arithmetic operations and 
consequently the computational costs. As control systems are 
typically real-time systems, they cannot take more time to 
process tasks than a sample period. In practical applications, the 
controller is designed with a reasonable sample period in order 
to produce good simulations results. Thereafter, it is 
implemented in a computer-based system, where samples are 
scheduled at every sample period; this is the maximum time that 
the processor takes to perform all control tasks and 
corresponding operations. If an operation cannot terminate on 
time, then the results might not be correct and the control system 
might not work as expected. 

For this particular reason, a time constraint verification 
becomes a very useful controller design tool, which may indicate 
if the chosen sample period and the computational realization are 
compatible, before the physical implementation, thus avoiding 
serious malfunctions of the system. As a result, the needed time 
to execute a specific code can be estimated, once each instruction 
can be broken into a set of assembly instructions; in particular, 
every processor has a table of clock cycles spent on each 
assembly instruction. To know the total time needed to execute 
a code, the number of clock cycles must be divided by the 
processor clock rate (or multiplied by the clock time). However, 
the estimation of clock cycles is a challenging task, once a 
controller’s implementation contains loops and decision 
statements, which can take different number of clock cycles to 
execute, depending on the input parameters (that are usually non-
deterministic values). In order to verify time constraints, a literal 
������� is generated to represent the time response, with the 
following constraint 

 ������� ⟺ �(� × �)≤ ��,  (5) 

where �  is the number of cycles spent by the digital controller, 
� is the clock period and �  is the deadline [11]. 

D. Poles and Zeros Verification 

The stability of a system may be verified through the 
positioning of its poles. A discrete system is stable if all its poles 
are in the interior region of the unitary circle of �-plane, i.e., the 
poles must have the module less than one [23]. Thus, the 
stability verification of a system should be done with an 
algorithm that determines the roots of the transfer function 
denominator polynomial. 

In this work, the Eigen Library [24] is used, in order to 
determine the roots of a polynomial. The three steps of the 
algorithm can be described as follows: 

1. Given a polynomial �(�)= �� + �(���)�
��� + ⋯ +

���+ ��, determine the companion matrix �, such 
that: 

� =

⎣
⎢
⎢
⎢
⎡
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋯ ⋯ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−�� −�� −�� ⋯ −����⎦

⎥
⎥
⎥
⎤

; 

2. Reduce the matrix � to the Real Schur form; 
3. Apply the Schur Decomposition to compute the roots 

of polynomial �(�).   
The verification engine checks the system’s stability, by 

verifying whether all eigenvalues show absolute values less than 
one, after the coefficients quantization. If any eigenvalue 
absolute value is greater than one, then stability fails and a 
counterexample is reported to reproduce the error in a 
simulation-based tool.  

IV. EXPERIMENTAL EVALUATION  

This section is split into three parts. The first section 
describes all digital controllers that are designed for the Ball and 
Beam industrial plant. The second section describes the 
experiments configuration and the last section summarizes the 
results. 

A.  Digital Controllers’ Design for a Ball and Beam Plant 

Digital controllers for a Quanser ball and beam plant are 
developed using different techniques with MATLAB’s aid, as 
described in Section II; they are all simulated in SIMULINK. 
The objective of this control system is to stabilize the ball in a 
desired position along the beam; therefore, the controller should 
input a voltage signal in the SRV02’s system, which rotates the 
beam by adjusting its angle. From the specification, the plant 
parameters and model are extracted [18], [19], [25]. The discrete 
form of the plant, using a sample time of 0.01 �, is given by  

�(�)=
1.0067× 10��(�+ 9.256)(�+ 0.9324)(�+ 0.9389)

(�− 1)�(�− 0.7041)
. 

Controllers with different performances are designed and 
simulated in SIMULINK. Table 2 describes the controllers with 
these numerators and denominators vectors as well as a 
summary of the simulation results, i.e., settling time (��), 
overshooting (���), and steady-state error (���). 

B. Experimental Setup 

For the following verifications, a 16-bits microcontroller 
with a clock rate of 16 MHz is used as the embedded platform, 
where the controllers are actually implemented; all sample rates 
are adjusted to 100 Hz. Table 3 summaries different digital 
controllers’ configurations. A physical implementation with a 
signal conditioning circuit external to the microcontroller with 
an external gain is assumed. To understand the influence of the 
realization structures on overflows, limit cycles, and time 
constrains, all digital controllers are implemented in three 
different realizations: DFI, DFII, and TDFII. These realizations 
have no effect in the system’s stability, once they only check for 
the effect of coefficient quantization and round-offs on poles and 
zeroes of the fixed-point digital controllers. Note that the second-
order structures (i.e., parallel or cascade models) are not 
addressed in this paper, but only direct implementations which 
are more susceptible to design’s errors. 



This work employs ESBMC v1.231 with the SMT solver Z3 
v4.0. All tests are executed with a maximum verification time of 
3600s. If the time needed to finish the verification is greater than 
this maximum, then the verification is aborted. ESBMC is 

                                                           
1 The ESBMC tool and benchmarks are available at www.esbmc.org 

invoked by setting the file name, timeout, and the SMT solver. 
Additionally, division by zero, array bounds, and pointer safety 
verifications are disabled, once the main objective is to verify the 
controller’s properties. The experiments are executed in a 

# Numerator Denominator �� OVS ��� 

A [0.15 0.05 0.40]  [1.0 0.0 0.3]  Inf. Inf. Inf. 

B [2.0 − 4.0 2.0]× 10�  [1.00 0.00 − 0.25]  0.35 27%  0 

C [50.000− 140.950 131,850− 40.935]   [1.00000 − 1.97000 1.03300 − 0.06068]  7.24 0 0 

D [9.37− 35.82 52.01− 3.482 10.03− 0.78]× 10� [1.000 9.112− 2.247− 8.656 0.657 0.135] Inf. Inf. Inf. 

E [1.0 − 3.0  3.0 − 1.0]× 10� [1.000 1.800 1.140 − 0.272] 0.12 57%  36% 

F [1.0 − 2.5 2.0 − 0.5]× 10� [1.000 1.500 0.680 0.096] 2.62 0 0 

# Controller Gain 
Input 
Range 

Bits Type 
Overflow Limit Cycle Timing Stability 

Result Time Result Time Result Time Result 

1 A 1 [−1,1] < 3,4 >  

DFI S 19.8 S 32.9 S <1 

S DFII S 15.7 S 235.8 S <1 

TDFII S 79.0 F 102.2 S <1 

2 B 10� [−1,1] < 2,6 >  

DFI F 1.7 S 62.2 S <1 

S DFII F 1.6 S 252.0 S <1 

TDFII F 1.6 F 114.8 S <1 

3 B 10� [−1,1] < 4,3 >  

DFI S 22.0 S 23.0 S <1 

S DFII S 10.2 S 131.9 S <1 

TDFII S 59.1 F 179.6 S <1 

4 C 50 [−1,1] < 2,13 >  

DFI F 79.2 TO - S <1 

S DFII F 29.7 F 686.8 S <1 

TDFII F 131.4 TO - S <1 

5 D 10� [−1,1] < 2,13 >  

DFI F 1771,7 TO - S <1 

F DFII F 437.5 TO - S <1 

TDFII F 2085.2 TO - S <1 

6 D 10�� [−1,1] < 2,13 >  

DFI F 3437.2 S 14.8 S <1 

F DFII F 860.0 S 28.9 S <1 

TDFII F 2522.7 S 25.8 S <1 

7 C 500 [−4,4] < 2,13 >  

DFI F 102.0 S 5.6 S <1 

S DFII F 34.5 S 20.0 S <1 

TDFII F 555.5 S 9.4 S <1 

8 C 500 [−5,5] < 2,8 >  

DFI F 48.6 F 494.3 S <1 

S DFII F 24.3 TO - S <1 

TDFII F 190.5 TO - S <1 

9 C 500 [−6,6] < 4,11 >  

DFI TO - TO - S <1 

S DFII F 12.8 TO - S <1 

TDFII TO - F 2503.6 S <1 

10 B 10� [−1,1] < 3,12 >  

DFI S 25.1 S 334.2 S <1 

S DFII S 19.6 S 1122.6 S <1 

TDFII S 68.7 F 250.1 S <1 

11 E 10� [−4,4] < 2,13 >  

DFI F 352.4 S 5.9 S <1 

S DFII F 55.7 S 13.3 S <1 

TDFII F 178.0 S 10.0 S <1 

12 F 10� [−2,2] < 2,13 >  

DFI F 14.9 S 5.6 S <1 

S DFII F 11.3 S 11.9 S <1 

TDFII F 77.5 S 8.8 S <1 

Table 2. Digital Controllers for a Ball and Beam Plant 

Table 3. Experimental Results 



computer with the following hardware configurations: Intel Core 
i7-2600 3.40 GHz processor, 24 GB of RAM, and Ubuntu 11.10 
Maverick Meerkat 64-bits OS. 

C. Experimental Results 

Table 3 presents the verification results. Here, S represents a 
successful test and F represents a failed test. If the verification 
exceeds the limit time, then the result is represented by TO (time-
out). According to the experimental results, ESBMC detects 
various errors in different realizations of digital controllers, but 
it cannot detect errors in 6.5% of test cases due to time-out; 
typically, the verification process takes longer if the controller 
order is higher than three. Others factors that may influence this 
time is the precision of the fixed-point implementation; if the 
number of fractional bits is increased, then the verification time 
tends to increase as well. Furthermore, in the limit cycle tests, the 
length of zero input vectors used to verify oscillations occurrence 
must be greater or equal than the length of the fractional part, i.e., 
the limit cycle verification time tends to take much longer if the 
precision is greater. The successful verifications usually take 
more time than failed ones, once the verification process only 
stops when an error is found or when all VCs are checked. 

The results points out that ESBMC is an useful design tool to 
determine the most optimized fixed-point structure realization 
for digital controllers; for example, the results in Table 3 (lines 
1, 2, 3, and 10) show that a control engineer may easily conclude 
that the controllers A and B should be implemented in the DFI 
or DFII instead of the TDFII, in order to avoid limit cycle 
oscillations. Furthermore, some failures that appear in the 
counterexamples are difficult to be detected by simulation tools. 
As an example, one can analyze the stability of a closed-loop 
control system using the controller C in SIMULINK and 
conclude that the closed-loop system will be stable. This 
controller is designed by emulating and mapping analogs poles 
and zeroes with the following zero-poles-gain representation: 

��(�)=
���(���)�(���.�����)�

(���.����)(���.����)(���.������)
.  

Two zeroes on 1 can be observed in this controller to cancel 
two poles in 1 of the ball and beam plant and then stabilize the 
closed-loop system. When this closed-loop system is simulated, 
the poles and zeroes cancellation occurs and the system’s 
response is acceptable (the step response is shown in Figure 2). 
However, if the transfer function with quantized coefficients is 
simulated, then the response is totally different (see Figure 3). 
When the closed-loop system model is verified by ESBMC, the 
stability test fails due to the non-cancellation of unstable poles 
on 1; the cancellation does not occur due to errors caused by the 
FWL effects. Some other examples of reduction of controller’s 
precision are described by Satina et al. [26]. 

Note that the stability verification time is not shown in Table 
3, since they are very fast to be checked, (i.e., each verification 
run takes less than one second). The results show that limit cycles 
failures occur more frequently in DTFII structure than others 
studied here. However, this structure presents less arithmetical 
operations, which means less computational effort and less 
chances of problems related to time constrains. None of the 
examples present time constrains failures, since the sample time 
is relatively high (10 ��). 

Additionally, the results show that direct form realizations 
are not a good solution for high-order digital controllers. The 
controllers C, D, E, and F always present overflows, although the 
fixed-point format and the representable range are changed. It 
indicates that these high-order systems should be implemented 
in other structures, e.g., parallel and cascade forms, where the 
probability of occurrence of overflows and round-off errors may 
be decreased. 

V. RELATED WORK 

Previous work about validation methods for control systems 
related to FWL implementation are mostly based on simulations 
methods. Chattopadhyay describes a case study about the 
occurrence of limit cycles at DC-DC converters that employs 
digital current mode control and pulse-width modulation (PWM) 
[27]. Here, the author proposes a solution for the oscillations by 
adjusting the ADC resolution and the limit cycle corrector. 
Chattopadhyay uses the MATLAB/SIMULINK tool to verify the 
limit cycle and then validate the implementation. However, tests 
carried out with pre-specified reference current do not take into 
account the reminiscent oscillations for the various different 
current values. An SMT-based BMC approach, as proposed here, 
may be used as a complementary technique to provide sufficient 
conditions to ensure the correctness of the DC-DC converters. 

Qu and Yourui propose an interesting method for PID 
controllers’ implementations in FPGAs based on fixed-point 
[28]. In this work, the control system design is carried out in 
SIMULINK and simulated in Modelsim [29]. After applying the 
method, the plant’s behavior presents stability and expected 
responses. However, the authors do not present any evaluation 
in terms of performance and error detection. In particular, the 
authors use a limited number of test vectors to validate their 
methodology; this would be avoided if they use a formal 
verification approach. As a result, Qu and Yourui would prove 
their methodology efficiency and would realize various types of 
checks (e.g., overflows, limit cycles, and time constrains). 

Mohta [5] demonstrates that traditional design tools (e.g., 
SIMULINK) cannot help enough in FWL related problems and 

Fig. 2. Step response without quantiztions effects 

Fig. 3. Step response with quantiztions effects 



suggests the creation of a tool to determine the most optimized 
FWL format implementation (i.e., coefficient word-length) to 
make the design process easier. In particular, Mohta presents a 
methodology to optimize the word-length in FWL 
implementations by using some metrics (e.g., ����

,���,���). 
This methodology is applied to digital filters (or controllers) and 
includes the closed-loop discussion, quantizations, and its effects 
on stability, but it does not include any substantial discussion on 
limit cycles, for example. Sung and Kum [6] also presents a 
methodology to optimize the word-length, where the search for 
the optimal implementation uses brute force in a simulation-
based environment. However, simulation approaches cannot 
cover all possible scenarios and thus the optimal FWL 
implementation may still contain other types of failures (e.g., 
overflows and limit cycles), because these optimizations only 
consist of error minimization. The verification proposed in this 
paper can be used as an iterative design tool that does not depend 
on complex metrics as in [5], and shows more reliable and less 
effort than a brute force simulation as in [6]. Moreover, 
additional properties can checked as well (e.g., limit cycles and 
overflows). 
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VII. CONCLUSIONS 

This paper describes a novel method to verify digital 
controllers, where an SMT-based BMC approach is used to 
verify fixed-points realizations properties of digital controllers 
and to identify failures that are hard to be detected by simulation 
tools. Digital controllers for a ball and beam industrial plant are 
used to verify the occurrence of typical problems of finite word-
length implementation; in particular, overflows and limit cycles. 
Furthermore, stability and time constraints are verified using 
different types of controllers’ realization. The proposed method 
can be used as an interactive process, where controllers are firstly 
designed in a mathematical tool and translated into a C model; 
then check whether properties hold in the controller’s model 
using a BMC tool and repeat this process until the controller is 
immune to overflows and limit cycles occurrences to ensure the 
system’s stability. The experimental results show that the 
stability and time constraints checks are relatively fast, while 
overflows and limit cycles tend to take much longer for high-
order digital controllers. Additionally, they show that the 
proposed method can verify up to 93.5% of all benchmarks. This 
is a good indication that an SMT-based BMC approach may be 
an important tool to design and verify fixed-point digital 
controllers. The proposed method can thus be effective to find 
design’s errors and to determine the most optimized fixed-point 
structure realization for digital controllers. This paper marks the 
first application of SMT-based BMC to digital controllers. 
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