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Abstract. We present a novel proof by induction algorithm, which
combines k-induction with invariants to model check C programs with
bounded and unbounded loops. The k-induction algorithm consists of
three cases: in the base case, we aim to find a counterexample with up
to k loop unwindings; in the forward condition, we check whether loops
have been fully unrolled and that the safety property P holds in all states
reachable within £ unwindings; and in the inductive step, we check that
whenever P holds for k¥ unwindings, it also holds after the next unwinding
of the system. For each step of the k-induction algorithm, we infer invari-
ants using affine constraints (i.e., polyhedral) to specify pre- and post-
conditions. The algorithm was implemented in two different ways, with
and without invariants using polyhedral, and the results were compared.
Experimental results show that both forms can handle a wide variety of
safety properties; however, the k-induction algorithm adopting polyhe-
dral solves more verification tasks, which demonstrate an improvement
of the induction algorithm effectiveness.

1 Introduction

The Bounded Model Checking (BMC) techniques based on Boolean Satisfiability
(SAT) [1] or Satisfiability Module Theories (SMT) [2] are successfully applied
to verify single- and multi-threaded programs and to find subtle bugs in real
programs [34/5]. The idea behind the BMC techniques is to check the negation
of a given property at a given depth, i.e., given a transition system M, a property
¢, and a limit of iterations k£, BMC unfolds the system & times and converts it
into a Verification Condition (VC) v such that ¢ is satisfiable if and only if ¢
has a counterexample of depth less than or equal to k.

Typically, BMC techniques are only able to falsify properties up to a given
depth k; however, they are not able to prove the correctness of the system, unless
an upper bound of % is known, i.e., a bound that unfolds all loops and recursive
functions to their maximum iteration. In particular, BMC techniques limit the
size of data structures (e.g., arrays) and the number of loop iterations to a given
bound k. This also limits the state space that needs to be explored in software
verification and has allowed BMC tools to find real errors in applications [34516],
but at the same time it has also made them susceptible to producing time-out
or memory-out for programs that contain unbounded loops or programs where
the number of loop unwindings cannot be determined statically.

Consider for example the simplistic program on the left of Fig.[l]in which the
loop in line 2 runs an unknown number of times, depending on the initial value



2 Herbert Rocha, Hussama Ismail, Lucas Cordeiro, and Raimundo Barreto

non-deterministically assigned to x in line 1. However, the assertion in line 3
holds independent of x’s initial value. Unfortunately, BMC tools like CBMC
[3], LLBMC [4, or ESBMC [5] typically fail to verify programs that contain
such loops. They insert a so-called unwinding assertion at the end of the loop,
which consists of the negated loop bound. This enforces BMC tools to choose
an unwind bound sufficiently large to search deeper in the state space of the
program, but with the drawback of exhausting time and memory resources.

unsigned int x=x;
while (x>0) x——;
assert (x==0);

unsigned int x=x;
if (x>0)
X——] } k copies

assert (!(x>0));
assert (x==0);

w e

[ B VI

Fig. 1: Unbounded loop (left) and finite unwinding (right)

One technique typically used to prove properties, for any given depth, is
mathematical induction. The algorithm called k-induction was successfully ap-
plied to ensure that (restricted) C programs do not contain data races [7I8] and
to respect time constraints specified during the design phase of a system [9].
Additionally, the k-induction is a well-established technique in hardware verifi-
cation, where it is easier to be applied due to the monolithic transition relation
present in hardware designs [9]. This paper contributes with a new algorithm
to prove correctness of C programs by mathematical induction in a completely
automatic way (i.e., the user does not need to provide the loop invariant).

The main idea of the algorithm is to use an iterative deepening approach
and check, for each step k£ up to a maximum value, three different cases called
here as base case, forward condition, and inductive step. Intuitively, in the base
case, we intend to find a counterexample of ¢ with up to k iterations of the
loop. The forward condition checks whether loops have been fully unrolled and
the validity of the property ¢ in all states reachable within & iterations. The
inductive step verifies that if ¢ is valid for & iterations, then ¢ will also be valid
for the next unfolding of the system. For each step of the algorithm, we infer
program invariants using affine constraints to prune the state space exploration
and to strength the induction hypothesis.

These algorithms were all implemented in the Efficient SMT-based Context-
Bounded Model Checker tool (known as ESBMqID, which uses BMC techniques
and SMT solvers (e.g., [I0/T1]) to verify embedded systems written in C/C++ [5].
In Cordeiro et al. [5] the ESBMC tool is presented, which describes how the
input program is encoded in SMT; what the strategies for unrolling loops are;
what are the transformations/optimizations that are important for performance;
what are the benefits of using an SMT solver instead of a SAT solver; and
how counterexamples to falsify properties are reconstructed. Here we extend
our previous work and focus our contribution on the combination of the k-
induction algorithm with invariants. First, we describe the details of an accurate
translation that extends ESBMC to prove the correctness of a given (safety)

! Available at http://esbmc.org/
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property for any depth without manual annotations of loops invariants. Second,
we adopt program invariants (using polyhedral) in the k-induction algorithm,
to speedup the verification time and to improve the quality of the results by
solving more verification tasks in less time. Third, we show that our present
implementation is applicable to a broader range of verification tasks, where other
existing approaches are unable to support [7S14].

2 Induction-based Verification of C Programs using
Invariants

The transformations in each step of the k-induction algorithm take place in the
intermediate representation level, after converting the C program into a GOTO-
program, which simplifies the representation and handles the unrolling of the
loops and the elimination of recursive functions.

2.1 The Proposed k-Induction Algorithm

Figure [2] shows an overview of the proposed k-induction algorithm. We do not
add additional details about the transformations on each step of the algorithm;
we keep it simple and describe the details in the next subsections so that one
can have a big picture of the proposed method. The input of the algorithm is a
C program P together with the safety property ¢. The algorithm returns true
(if there is no path that violates the safety property), false (if there exists a
path that violates the safety property), and unknown (if it does not succeed in
computing an answer true or false).

In the base case, the algorithm tries to find a counterexample up to a maxi-
mum number of iterations k. In the forward condition, global correctness of the
loop w.r.t. the property is shown for the case that the loop iterates at most k
times; and in the inductive step, the algorithm checks that, if the property is
valid in k iterations, then it must be valid for the next iterations. The algorithm
runs up to a maximum number of iterations and only increases the value of k if
it can not falsify the property during the base case.

Differences to other k-Iduction Algorithms Our k-induction algorithm is
slightly different than those presented by GroBe et al. [I4], Donaldson et al. [7],
and Hagen et al. [16]. In Grofle et al., the forward condition and the inductive
step are computed differently from our approach (as described in Section and
the value of k is increased only at the end of the algorithm; in this particular case,
computational resources are thus wasted since loops are usually unfolded at least
two times. Donaldson et al. [7] and Hagen et al. [16] propose the k-induction with
two steps only (i.e., the base case and the inductive step); however, the inductive
step of the approach proposed by Donaldson et al. requires annotations in the
code to introduce loops invariants, but our method is completely automatic as
in Hagen et al [16]. Additionally, as observed in the experimental evaluation (see
Section , the use of the forward condition, in our proposed method, improves
significantly the quality of the results, because some programs that are hard to
be proved by the inductive step can be proved by the forward condition using
affine constraints.
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i|input: program P and safety property ¢
2| output: true, false, or unknown

slk =1

4| while k <= max_iterations do

5 if base_case(P, ¢, k) then

6 show counterexample s[0..k]

7 return false

s else

9 k=k+1

10 if forward_condition (P, ¢, k) then
11 return true

12 else

13 if inductive_step (P, ¢, k) then
14 return true

15 end—if

16 end—if

17 end—if
18| end—while
19| return unknown

Fig. 2: An overview of the k-induction algorithm.

Loop-free Programs In the k-induction algorithm, the loop unwinding of the
program is done incrementally from one to maz_iterations (cf. Fig. , where the
number of unwindings is measured by counting the number of backjumps [15].
On each step of the k-induction algorithm, an instance of the program that
contains k copies of the loop body corresponds to checking a loop-free program,
which uses only if-statements in order to prevent its execution in the case that
the loop ends before k iterations.

Definition 1 (Loop-free Program) A loop-free program is represented by a
straight-line program (without loops) by providing an ite (0, p1, p2) operator, which
takes a Boolean formula 6 and, depending on its value, selects either the second
p1 or the third argument py, where py represents the loop body and ps repre-
sents either another ite operator, which encodes a k-copy of the loop body, or an
assertion/assume statement.

Therefore, each step of our k-induction algorithm transforms a program with
loops into a loop-free program, such that correctness of the loop-free program
implies correctness of the program with loops.

If the program consists of multiple and possibly nested loops, we simply set
the number of loop unwindings globally, that is, for all loops in the program
and apply these aforementioned translations recursively. Note, however, that
each case of the k-induction algorithm performs different transformations at the
end of the loop: either to find bugs (base case) or to prove that enough loop
unwindings have been done (forward condition).
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Program Translations In terms of program translations, which are all done
completely automatic by our proposed method, the base case simply inserts an
unwinding assumption, to the respective loop-free program P’, consisting of the
termination condition o after the loop, as follows I AT A o = ¢, where I is the
initial condition, T is the transition relation of P’, and ¢ is a safety property to
be checked.

The forward case inserts an unwinding assertion instead of an assumption
after the loop, as follows I AT = o A ¢. The forward condition, proposed by
GroBe et al. [T4], introduces a sequence of commands to check whether there is
a path between an initial state and the current state k, while in the algorithm
proposed in this paper, an assertion (i.e., the loop invariant) is automatically
inserted by our algorithm, without the user’s intervention, at the end of the loop
to check whether all states are reached in k steps. Our base case and forward
condition translations can easily be implemented on top of plain BMC.

However, for the inductive step of the algorithm, several transformations are
carried out. In particular, the loop while(c) {E;} is converted into

A;while(c) {S; E;U; } R; (1)

where A is the code responsible for assigning non-deterministic values to all loops
variables, i.e., the state is havocked before the loop, ¢ is the halt condition of
the loop while, S is the code to store the current state of the program variables
before executing the statements of F, E is the actual code inside the loop while,
U is the code to update all program variables with local values after executing
FE, and R is the code to remove redundant states.

Definition 2 (Loop Variable) A loop variable is a variable v C V, where
V' = Vyiobat U Viecar given that Vyiopar s the set of global variables and Vipear is
the set of local variables that occur in the loop of a program.

Definition 3 (Havoc Loop Variable) Nondeterministic value is assigned to
a loop variable v if and only if v is used in the loop termination condition o, in
the loop counter that controls iterations of a loop; or repeatedly modified inside
the loop body.

The intuitive interpretation of S, U, and R is that if the current state (after
executing F) is different than the previous state (before executing F), then new
states are produced in the given loop iteration; otherwise, they are redundant
and the code R is then responsible for preventing those redundant states to
be included into the states vector. Note further that the code A assigns non-
deterministic values to all loops variables so that the model checker can explore
all possible states implicitly. Differently, GroBe et al. [14] havoc all program
variables, which makes it difficult to apply their approach to arbitrary programs
since they do not provide enough information to constrain the havocked variables
in the program. Similarly, the loop for can easily be converted into the loop while
as follows: for(B;c; D){FE;} is rewritten as

B; while(c) {E; D; } (2)

where B is the initial condition of the loop, ¢ is the halt condition of the loop,
D is the increment of each iteration over B, and E is the actual code inside
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the loop for. No further transformations are applied to the loop for during the
inductive step. Additionally, the loop do while can trivially be converted into
the loop while with one difference, the code inside the loop must execute at least
once before the halt condition is checked.

The inductive step is thus represented by Yy Ao = ¢, where + is the transition
relation of P, which represents a loop-free program (cf. Definition [1f) after ap-
plying transformations and . The intuitive interpretation of the inductive
step is to prove that, for any unfolding of the program, there is no assignment of
particular values to the program variables that violates the safety property being
checked. Finally, the induction hypothesis of the inductive step consists of the
conjunction between the postconditions (Post) and the termination condition
(o) of the loop.

Invariant Generation To infer program invariants, we adopted the PIPS [18]
tool, which is an interprocedural source-to-source compiler framework for C and
Fortran programs and relies on a polyhedral abstraction of program behavior.
PIPS development has been driven for almost twenty years to automatic analysis
of large size programs [19]. PIPS performs a two-step analysis: (1) each program
instruction is associated to an affine transformer, representing its underlying
transfer function. This is a bottom-up procedure, starting from elementary in-
structions, then working on compound statements and up to function defini-
tions; (2) polyhedral invariants are propagated along with instructions, using
previously computed transformers.

In our proposed method, PIPS receives the analyzed program as input and
then it generates invariants that are given as comments surrounding instruc-
tions in the output C code. These invariants are translated and instrumented
into the program as assume statements. In particular, we adopt the function
assume (expr) to limit possible values of the variables that are related to the in-
variants. This step is needed since PIPS generates invariants that are presented
as mathematical expressions (e.g., 25 < 5t), which are not accepted by C pro-
grams syntax and invariants with #init suffix that is used to distinguish the old
value from the new value.

2.2 Running Example

A program extracted from the benchmarks of the SV-COMP [I7] is used as a
running example as shown in Figure |3} which already includes invariants using
polyhedral. In Figure[3] a is an integer constant and note that variables ¢ and sn
are declared with a type larger than the type of the variable n to avoid arithmetic
overflow. Mathematically, the code above represents the implementation of the
sum given by the following equation:

Sn:Za:na,nZl (3)
i=1

In the code of Figure [3| the invariants produced by PIPS are included as as-
sume statements; the property (represented by the assertion in line [13)) must
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int main(int argc, char xxargv)
{
long long int i = 1, sn = 0;
assume( i==1 && sn==0 ); // Invariant
unsigned int n;
assume (n>=1);
while (i<=n) {
assume( l<=i && i<=n ); // Invariant
sn = sn+a;
i+
}
assume( l<=i && nt+l<=i ); // Invariant
assert (sn=—n=a);

© 0 N O U oA W N e

N
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}

Fig. 3: Running example for the k-induction algorithm.

be true for any value of n (i.e., for any unfolding of the program). Differently
from our k-induction algorithm, BMC techniques have difficulties in proving the
correctness of this (simple) program since the upper limit value of the loop, rep-
resented by n, is non-deterministically chosen (i.e., the variable n can assume
any value from one to the size of the unsigned int type, which varies between
different types of computers). Due to this condition, the loop will be unfolded
2" — 1 times (in the worst case, 232 — 1 times on 32 bits integer), which is thus
impractical. Basically, the bounded model checker would symbolically execute
several times the increment of the variable ¢ and the computation of the variable
sn by 4,294,967,295 times. To solve the problem of unfolding the loop 2" — 1
times, the translations previously described are performed.

The Base Case The base case initializes the limits of the loop’s termination
condition with non-deterministic values so that the model checker can explore
all possible states implicitly. The pre- and postconditions of the loop shown in
Figure 3] in static single assignment (SSA) form [I5], are as follows:

Pre.— |M= nondet_uint Anq > 1
A SNq :0/\7,1 =1

Post := [ik21/\ ik>n1:>snk:n1xa]

where Pre and Post are the pre- and postconditions to compute the sum given
by Equation , respectively, and nondet_wint is a non-deterministic function,
which can return any value of type unsigned int. In the preconditions, n; repre-
sents the first assignment to the variable n, which is a non-deterministic value
greater than or equal to one. This ensures that the model checker explores all
possible unwindings of the program. Additionally, sn| represents the first as-
signment to the variable sn and 4, is the initial condition of the loop. In the
postconditions, snj represents the assignment n + 1 for the variable sn in Fig-
ure[3] which must be true if i, > n;. The code that is not pre- or postcondition is
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represented by the variable @ (i.e., the sequence of commands inside the loop for)
and it does not undergo any transformation during the base case. The resulting
code of the base case transformations can be seen in Figure || (cf. Definition .
Note that the assume (in line 11), which consists of the termination condition,
eliminates all execution paths that do not satisfy the constraint ¢ > n. This
ensures that the base case finds a counterexample of depth & without reporting
any false negative result. Note further that other assume statements, shown in
Figure [3] are simply eliminated during the symbolic execution by propagating
constants and checking that the resulting expression evaluates to true [5].

1/int main(int argc, char xxargv) {
2 long long int i, sn=0;

3| unsigned int n=nondet_uint ();

4| assume (n>=1);

5 i=1;

6 if (i<=n) {

7 sn = sn + aj }kcopies

8 i++;

of 1}

10

1|  assume(i>n); // wnwinding assumption
12| assert(sn—nxa);

13| }

Fig. 4: Example code for the proof by mathematical induction, during base case.

The Forward Condition In the forward condition, the k-induction algorithm
attempts to prove that the loop is sufficiently unfolded and whether the property
is valid in all states reachable within & steps. The postconditions of the loop
shown in Figure[3] in SSA form, can then be defined as follows:

Post := [Zk >ni Asng =ng X a]

The preconditions of the forward condition are identical to the base case.
In the postconditions Post, there is an assertion to check whether the loop is
sufficiently expanded, represented by the constraint iy > n1, where ij represents
the value of the variable 7 at iteration n + 1. The resulting code of the forward
condition transformations can be seen in Figure [5] (cf. Definition [L)). The forward
condition attempts to prove that the loop is unfolded deep enough (by checking
the loop invariant in line 11) and if the property is valid in all states reachable
within % iterations (by checking the assertion in line 12). As in the base case,
we also eliminate assume expressions by checking whether they evaluate to true
by propagating constants during symbolic execution.

The Inductive Step In the inductive step, the k-induction algorithm attempts
to prove that, if the property is valid up to depth k, the same must be valid for
the next value of k. Several changes are performed in the original code during this
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1/int main(int argc, char xxargv) {
2 long long int i, sn=0;

3| unsigned int n=nondet_uint ();

4| assume (n>=1);

5 i=1;

6 if (i<=n) {

7 sn = sn + a; }kcopies

8 i++;

of }

10 P

11 assert(i>n); // check loop invariant
12| assert(sn—nxa);

13| }

Fig.5: Example code for the proof by mathematical induction, during forward
condition.

step. First, a structure called statet is defined, containing all variables within the
loop and the halt condition of that loop. Then, a variable of type statet called
cs (current state) is declared, which is responsible for storing the values of a
given variable in a given iteration; in the current implementation, the cs data
structure does not handle heap-allocated objects. A state vector of size equal to
the number of iterations of the loop is also declared, called sv (state vector) that
will store the values of all variables on each iteration of the loop.

Before starting the loop, all loops variables (cf. Definitions [2] and [3)) are
initialized to non-deterministic values and stored in the state vector on the first
iteration of the loop so that the model checker can explore all possible states
implicitly. Within the loop, after storing the current state and executing the
code inside the loop, all state variables are updated with the current values of
the current iteration. An assume instruction is inserted with the condition that
the current state is different from the previous one, to prevent redundant states
to be inserted into the state vector; in this case, we compare sv; [i] to cs; for
0<j<kand0<1i<k. Inthe example we add constraints as follows:

sv1 [0] # ¢s1

sv1 [0] # cs1 A svg [1] # cs2 (4)

sv1 [0] # es1 A sva [1] # csa A ... svg [i] # esk

Although, we can compare svy [i] to all ¢sg for ¢ < k (since inequalities are
not transitive), the number of constraints can still grow very large quickly, and
easily “blow-up” the SMT solver. In the SV-COMP benchmarks, we observed a
substantial improvement in performance if we generate and check constraints as
described in Equation .

Finally, an assume instruction is inserted after the loop, which is similar to
that inserted in the base case. The pre- and postconditions of the loop shown in
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Figure [3} in SSA form, are defined as follows:

n1 = nondet_wint Any > 1
N sny = 0A il =1

Pre:= | A ¢s1.v9 = nondet_uint
VAN
A €81.0,, = nondet_uint

Post := [ik >ng = Sng = nxa]

In the preconditions Pre, in addition to the initialization of the variables,
the value of all variables contained in the current state cs must be assigned
with non-deterministic values, where m is the number of (automatic and static)
variables that are used in the program. The postconditions do not change, as
in the base case; they only contain the property that the algorithm is trying to
prove. In the instruction set @), changes are made in the code to save the value
of the variables before and after the current iteration i, as follows:

svfi—1]=cs; A S
A CS;. Vg = Vo

Q=1,

N C8;. U = Umi

In the instruction set @, sv[i — 1] is the vector position to save the current
state cs;, S is the actual code inside the loop, and the assignments cs;.vg =
Vo; A ... N CS;. Uy = Uy Tepresent the value of the variables in iteration i being
saved in the current state cs;. The modified code for the inductive step, using
the notation defined in Section [2.I} can be seen in Figure [6] Note that the if-
statement (lines 18-26) in Figuris copied k-times according to Definition
As in the base case, the inductive step also inserts an assume instruction, which
contains the termination condition. Differently from base case, the inductive step
proves that the property, specified by the assertion, is valid for any value of n.

Lemma 1 If the induction hypothesis {Post A = (i <n)} holds for k + 1
consecutive iterations, then it also holds for k preceding iterations.

After the loop while is finished, the induction hypothesis {Post A = (i < n)}
is satisfied on any number of iterations; in particular, the SMT solver can easily
verify Lemma [1| and conclude that sn == n * a is inductive relative to n. As in
previous cases, we also eliminate assume expressions by checking whether they
evaluate to true by propagating constants during symbolic execution.

3 Experimental Evaluation

To evaluate the proposed method, we initially adopted the benchmarks of the
SV-COMP 201513 in particular the Loops subcategory. The k-induction algo-
rithm was implemented in two different ways, with and without invariants us-
ing polyhedral. The implementation of the algorithm with invariants is called

2 http://sv-comp.sosy-lab.org/2015/
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//variables inside the loop
typedef struct state {

long long int i, sn;

unsigned int n;

} statet;

int main(int argc, char xxargv) {
long long int i, sn=0;

unsigned int n=nondet_uint ();
assume (n>=1);

w| i=1;

u| //declaration of current state
12| //and state wvector

13| statet c¢s, sv[n];

| //A: assign non—deterministc values
15| c¢s.i=nondet_uint ();

16| cs.sn=nondet_uint ();

17| ¢s.n=n;

18| if (i<=n) { //c: halt condition

© 0 N O U R W N e

19|  sv[i—l]=ecs; //S: store current state
20/ sn = sn + a; //E: code inside the loop
211 //U: update variables with local wvalues

cs.i=i; cs.sn=sn; cs.n=n;
23| //R: remove redundant states
24| assume(sv[i—1]l=cs);

25 i++;

26|}

27
28| assume(i>n); //unwinding assumption
20| assert(sn=—nsxa);

30}

Fig. 6: Example code for the proof by mathematical induction, during inductive
step.

DepthK El The ESBMC v1.24.1 was adopted in both implementation. This way,
we performed a comparison between DepthK (i.e., k-induction and invariants),
ESBMC with k-induction, and ESBMC with plain BMC.

3.1 Experimental Setup

The experiments were conducted on a computer with Intel Core i7-2600, 3.40GHz
with 24GB of RAM with Ubuntu 14.04.1 LTS 64-bit. Each verification task is
limited to a CPU run time of 15 min and a memory consumption of 15 GB.
Additionally, we defined the max_iterations to 100 (cf. Fig. [2]).

Loops subcategory consists of 142 verification tasks, which are organized as
follows: 49 benchmarks contain valid properties (i.e., the verification tool must
be able to prove correctness) and 93 benchmarks contain invalid properties (i.e.,
the verification tool must be able to falsify the property).

3 https://github.com/hbgit /depthk
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3.2 Experimental Results

We evaluate the experimental results as follows: we adopt the same score scheme
that is used by the SVCOMP ruleﬂ in particular, we check the verification result
and time presented by each implementation. Figure [7] shows the comparative
results between the scores generated by DepthK with k-induction and invariants
using polyhedral, ESBMC using k-induction only, and ESBMC using plain BMC.
The total scores in the Loops subcategory for ESBMC with plain BMC is 66;
ESBMC using k-induction only is 115; and DepthK combining k-induction and
invariants is 141.

Score (max: 235) Verification Results
2 10%
90%
80% 28%
150 70% 37%
60%
10,
50% 36%
30%
14l 20%
115 ’
50 10% 25%
0%
DepthK ESBMC
0 ; \ | (using k-induction)
DepthK ESBMC ESBMC Timeout Verification Unknown
using without Inductive step B Forward condition
k-induction  k-induction M Base case
Fig. 7: Verification Scores Fig. 8: Verification results

Figure [§] shows the distribution of the result by each step of the k-induction
algorithm (i.e., base case, forward condition, and inductive step), including ver-
ifications that result in unknown and timeout. If we analyze the distribution of
the results, we identified that DepthK was able to prove properties during the
forward condition in 6% of the verification tasks, and ESBMC with k-induction
proves properties only during the inductive step. As a result, we observe that
invariants help prove that the loop is sufficiently unfolded and whether the prop-
erty is valid, taking into account that this is performed in the forward condition
step. DepthK has not found a solution in 28% of the verification tasks; this
is explained by the invariants generated from PIPS, which could not generate
strong invariants to be k-inductive either due to the transformers or due to the

4 http://sv-comp.sosy-lab.org/2015/rules.php
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invariants are not convex. ESBMC with k-induction does not find a solution in
37% of the verification tasks, therefore providing evidences that invariants can
improve the verification results. DepthK and ESBMC with k-induction found a
solution in 66% and 53% of the verification tasks, respectively. However, they
reported 6% and 10% of timeouts, respectively.

Analyzing the verification time, we identified that ESBMC with k-induction
verified all benchmarks in 15320 seconds; DepthK took approximately 11518
seconds, i.e., a reduction of 25% of the verification time; and ESBMC using
plain BMC took about 3100 seconds (but solves less verification tasks).

4 Related Work

The application of the k-induction method is gaining popularity in the soft-
ware verification community. Recently, Bradley et al. introduce “property-based
reachability” (or IC3) procedure for the safety verification of systems [22123].
The authors have shown that IC3 can scale on certain benchmarks where k-
induction fails to succeed. However, we do not compare k-induction against I1C3
since it is already done by Bradley [22]; we focus our comparison on related
k-induction procedures.

Previous work on the one hand have explored proofs by mathematical in-
duction of hardware and software systems with some limitations, e.g., requiring
changes in the code to introduce loop invariants [7I8[T4]. This complicates the
automation of the verification process, unless other methods are used in combina-
tion to automatically compute the loop invariant [20J21]. Similar to the approach
proposed by Hagen and Tinelli [T6], our method is completely automatic and
does not require the user to provide loops invariants as the final assertions after
each loop. On the other hand, state-of-the-art BMC tools have been widely used,
but as bug-finding tools since they typically analyze bounded program runs [3/4];
completeness can only be ensured if the BMC tools know an upper bound on
the depth of the state space, which is not generally the case. This paper closes
this gap, providing clear evidence that the k-induction algorithm can be applied
to a broader range of C programs without manual intervention.

Grofle et al. describe a method to prove properties of TLM designs (Trans-
action Level Modeling) in SystemC [I4]. The approach consists of converting
a SystemC program into a C program, and then it performs the proof of the
properties by mathematical induction using the CBMC tool [3]. The difference
to the one described in this paper lies on the transformations carried out in
the forward condition. During the forward condition, transformations similar to
those inserted during the inductive step in our approach, are introduced in the
code to check whether there is a path between an initial state and the current
state k; while the algorithm proposed in this paper, an assertion is inserted at
the end of the loop to verify that all states are reached in k steps.

Donaldson et al. describe a verification tool called Scratch [7] to detect data
races during Direct Memory Access (DMA) in the CELL BE processor from
IBM [7]. The approach used to verify C programs is the k-induction technique.
The approach was implemented in the Scratch tool that uses two steps, the base
case and the inductive step. The tool is able to prove the absence of data races,
but it is restricted to verify that specific class of problems for a particular type
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of hardware. The steps of the algorithm are similar to the one proposed in this
paper, but it requires annotations in the code to introduce loops invariants.

Kahsai et al. describe PKIND, a parallel version of the tool KIND, used
to verify invariant properties of programs written in Lustre [24]. In order to
verify a Lustre program, PKIND starts three processes, one for base case, one
for inductive step, and one for invariant generation, note that unlike ESBMC,
the k-induction algorithm used by PKIND does not have a forward condition
step. The base case starts the verification with £ = 0, and increments its value
until it finds a counterexample or it receives a message from the inductive step
process that a solution was found. Similarly, the inductive step increases the
value of k until it receives a message from the base case process or a solution is
found. The invariant generation process generates a set of candidates invariants
from predefined templates and constantly feeds the inductive step process, as
done recently by Beyer et al. [25] (we do not compare to Beyer et al. since their
technical report appeared only after we submitted our CAV abstract and thus
there was no time to further evaluate their work).

5 Conclusions

The main contributions of this work are the design, implementation, and eval-
uation of the k-induction algorithm adopting invariants using polyhedral in a
verification tool, as well as, the use of the technique for the automated verifi-
cation of reachability properties in heteregenous programs. To the best of our
knowledge, this paper marks the first application of the k-induction algorithm
to a broader range of C programs with loops. To validate the k-induction algo-
rithm, experiments were performed involving 142 benchmarks of the SV-COMP
2015 loops subcategory. The experimental results also show that the k-induction
algorithm without invariants was able to verify 52% of the benchmarks in 15320
seconds, and k-induction algorithm with invariants using polyhedral was able
to verify 66% of the benchmarks in 11518 seconds, which gives a speedup of
roughly 25% faster than the k-induction algorithm without the invariants ver-
sion. Given a fixed timeout, this speedup can also improve the quality of the
results (around 13%), because more programs can be verified if their verifica-
tion would otherwise be interrupted by the time limit. In addition, both forms
were able to prove or falsify a wide variety of safety properties; however, the
k-induction algorithm adopting polyhedral solves more verification tasks, which
demonstrate an improvement of the induction algorithm effectiveness.
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