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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

EXPRESSIVE AND EFFICIENT BOUNDED MODEL CHECKING OF
CONCURRENT SOFTWARE

by Jeremy Morse

To improve automated verification techniques for ANSI-C software, I examine temporal logics

for describing program properties, and techniques for increasing the speed of program verifica-

tion, for both single threaded and concurrent programs, based on the model checker ESBMC. A

technique for evaluating LTL formulae over finite program traces is proposed and evaluated over

a piece of industrial software and a suite of benchmarks, with favourable results. Efficient for-

mulations of the model checking problem for SMT solvers are evaluated, and the performance

of different solvers compared. Finally a number of optimisations for concurrent program verifi-

cation not previously applied to symbolic software model checking are evaluated, resulting in an

order of magnitude performance improvement over ESBMCs prior and already internationally

competitive performance.
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Chapter 1

Introduction

When systems are designed, engineering processes demand that a validated set of criteria be

available to evaluate the design, verifying that it is is correct and meets the requirements of the

application. Examples of this include verifying that a bridge will support its maximum design

load, operating a high power circuit for a long period1 to verify its robustness, or studying a

piece of software’s source code and deciding whether it will produce the required output for all

given inputs.

As technology becomes increasingly common in the modern world, the correct operation of

such technology accordingly becomes more important. In addition, technology is used to per-

form ever more complex tasks. Verifying that the docking system on a space shuttle operates

correctly, or that systems in a nuclear plant always fail safe, are clear examples where lives are

at risk and thus those systems require verification. Less prominent systems, however, can still be

significantly disruptive and cause economic damage; an “off by one” error in Microsoft’s Win-

dows CE product2 caused hundreds of thousands of Zune MP3 players to enter infinite loops

on one day every leap year [141], while a similar fault in Apple’s iOS software prevented timer

alarms from sounding at the start of 2013. Such faults are non-fatal and may be insignificant in

impact to the operator of the system, but are highly undesirable if they disrupt millions of peo-

ple. Another example is the recent “Heartbleed” software vulnerability [3], which has caused

an unknown amount of damage, and at the very least caused millions of people to change pass-

words.

The economic cost of verifying systems is, however, significant, and businesses cannot always

afford to rigorously verify their products. In response, academia must produce effective tech-

nology to verify systems using a feasible amount of resources, and that delivers a reasonable

assurance of system correctness.
1A “soak test”
2Whereby the programmers had assumed, when calculating the current year, that all years had 365 days, without

considering leap years
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This thesis explores the use of automated verification to deliver verification for software sys-

tems, with a particular focus on model checking to verify software using purely automatic pro-

cesses. I first address several existing verification techniques to frame the chosen solution, before

describing the structure of the rest of this thesis.

1.1 Testing

Verification often takes the form of a series of tests. The acceptance criteria of many projects are

for the product to correctly perform certain tasks, and the only way to know this for certain is

to actually perform those tasks, through testing. To help with this procedure, software projects

tend to have test suites: collections of independent tests. Crucially, test suites can be applied

automatically to the codebase, allowing engineers to verify the code they have written without

individual effort, and during the development cycle.

Testing, however, is not a comprehensive solution to the existence of errors, or without costs.

The failure of a test does not always indicate that incorrect behaviour is occurring, only that

a behavioural change has occurred, and failures that are actual incorrect behaviours still re-

quire the engineer to analyse the system further to discover the cause. A significant amount of

knowledge about the system, and imagination regarding ways it could fail, are required to write

tests; test suites must also be maintained in step with the development of the system to avoid

incompatibilities. This in itself leads to great expenditure of engineering time [43, 30].

Testing does not scale gracefully to verify large pieces of software. The amount of time and

resources required to perform tests grows linearly with the number of tests, while the complexity

of systems, the number of interacting components, and the range of inputs, ensures that the

quantity of tests required to verify every aspect of the system grows exponentially.

An alternative to testing all inputs and all interactions is instead to test all lines of code. Test

generation tools such as KLEE [48] can generate such tests to ensure high coverage of the test

suite. This approach does not verify every single path through the program though, and in the

presence of concurrency it becomes difficult to control the path taken by each particular test.

Despite its limitations, testing forms the backbone of verification for major projects today. The

SQLite SQL library, for example, has several million tests for its codebase, consisting of many

times more lines of code than the actual code base itself [4]. Testing remains difficult though,

and it does not provide a complete method of finding new faults. Attention thus turns to the pos-

sibility of verifying the correct operation of designs without the need for exhaustive or specially

written tests.
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1.2 Properties

When attempting to automatically verify that a design is correct, a significant hurdle is deciding

what correctness means. The design engineer has a knowledge of the correct behaviour of the

system, but this must be expressed in a manner that can be understood by tools, and applied to

the model of the program which the tools create. The solution to this is the creation of program

properties. A property is some invariant of the program that must always hold. If it does not

always hold (it is violated), then the program is incorrect in some manner, such as performing

an illegal operation or producing the wrong output.

Properties of a program can be expressed about its state, perhaps that a variable must always

hold a certain value, or as behaviour of the program that must always be preserved, such as

always responding to a request. Properties may be negative as well as positive, i.e., that some

behaviour must never occur.

Numerous kinds of properties exist; programming languages themselves have built in properties,

stating that a program only operates correctly if its actions are well defined by the language, such

as accesses to arrays always being in bounds, or pointer accesses never dereferencing a null

reference. Engineers can state their own properties regarding program operation too: commonly

by making assertions about current state during the course of program execution.

More elaborate properties can be expressed too. The use of temporal logic allows the description

of program behaviours over time, for example defining future behaviours as the result of past

behaviours. Specification languages such as SLIC [17] allow the interactions between software

components to be analysed and verified. Some properties exist that are specific to the problem

of concurrency: deadlock, where all concurrent processes block on some conditions and none

are able to make progress is a universal property; the validity of accesses to shared variables and

resources, however, is more difficult to define.

The specification of properties allows verification tools to identify errors in programs, making

it possible to examine a particular execution of a program and detect errors. This requires

that program execution traces are available against which the properties can be evaluated. At

the simplest level, this means that the engineer-written test suites need only provide sample

inputs, and the verification process needs to check whether any properties are violated when the

software is run against the tests.

A variation on this approach is runtime verification, where properties are verified as the program

runs, and cause early program termination if a property is violated. While this may appear un-

wise (a verification technique causing early termination, which is often an incorrect behaviour

itself), the detection of a property violation indicates that incorrect behaviour is already occur-

ring, and often early termination is the safest outcome rather than continuing down an incor-

rect code path [28]. Alternate solutions include entering some kind of fail-safe mode or other
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emergency handler designed to prevent the detected incorrect behaviour causing any (further)

damage.

Fundamentally though, property verification will still suffer the same problems as testing, in

that the number of inputs to a program can be huge, and not all operations can be tested in all

scenarios. This problem is often referred to as the state explosion problem—a state meaning

a valuation of variables that are used in the program. The solution to this limitation is the

development of techniques that do not require repeated execution of the software, and instead

utilise some form of abstract interpretation to deduce facts about the program. This does not

reduce the number of states the program can have, but instead reasons about them in a much

more efficient manner. Such approaches can avoid enumerating the entire state space of the

program by approximating the program, or exploiting language properties (such as type systems)

to prove states unreachable.

1.3 Automated Verification

When turning to automated verification algorithms we must first familiarise ourselves with their

limitations. Firstly, deciding the properties of general purpose program is generally undecidable,

for example reachability of a program location. Some algorithms accept this fact and perform

verification without any guarantee that an answer will ever be discovered. Others provide an

approximate verification, either by overapproximating program behaviour by modelling it in

a way that might include more behaviours than the program actually exhibits, or by underap-

proximating which covers fewer behaviours than the program really contains. The former can

produce unsound results, where property violations are reported when the violating behaviour

is not actually part of the program; while the latter is incomplete, opening the possibility for

property violations to exist that are not reported.

1.3.1 Static analysis

One of the simplest and most successful strategies that follows an abstract interpretation ap-

proach is static analysis [71], typically applied to a high level program representation, often

during compilation. Whilst simulating executions through the program, rather than attempting

to track the exact state of the program at particular point, an abstract domain is used that ap-

proximates the set of values a variable may take. For example: the upper and lower bounds of

a variable’s value may be used instead of the multiple values it could contains during execu-

tion. This vastly reduces the number of program states that must be tracked during verification,

but does not provide precise information about the execution. Continuing our example, given a

property that a variable never has a particular value, we would not be certain that that property

is violated if the range of valuation we track covers that value, as we only know the variable’s

possible values are bounded by that range, not that all values in that range are feasible. How-

ever if we had a property claiming that a variable never had a particular value, and our tracking
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demonstrates a range not covering that value, then we can be certain the property is never vio-

lated. Another, real-world example of this kind of static analysis is the detection of uninitialised

variables, where variable assignments are tracked to discover paths where no assignment occurs

before the variable is read: this is often a language property violation.

Static analysis approaches have proven successful at catching simple faults — i.e. property

violations that do not depend heavily on program logic or the manipulation of memory. They

are particularly effective when integrated into the development process (see below), allowing

faults to be identified and solved while code is still being written. Their use for general purpose

verification is limited due to the broadness of their approximations, which makes it difficult to

be certain that properties depending on complex program logic are violated. They also lack a

general method for determining the cause of an assertion violation, such as the ability to blame

a violation on either a path or program location, due to their approximations [76].

These methods are, however, effective enough to have led to a number of commercially viable

static analysis tools being produced, such as Coverity [1] and PVS-Studio [5]. Such tools take

a pragmatic approach of integrating into existing development work flows (such as the devel-

opers IDE) and highlight possibly defective portions of code. This is a success story where

automated verification is helping improve software quality. However, static analysis’ limitations

are brought into sharp focus by these tools’ inability to detect a recent OpenSSL vulnerability

[3] commonly referred to as “Heartbleed”. The conclusion of both firms regarding their ability

to detect the bug is that the logic involved is too difficult for static analysis [49, 108], although

Coverity have introduced probabilistic heuristics that now report the error.

1.3.2 Model checking

A more precise verification approach is model checking. This was a technique originally de-

veloped to verify finite-state models of concurrent systems [56] (specified in tool-specific lan-

guages), by systematically simulating each execution path and each possible interleaving of

concurrent processes. The process of exploring each possible path in the model allows the

property violation search to be sound, and the finite-state limitation allows that search to be

complete. Of significant interest is that when a property is violated, a precise path through the

model and set of variable assignments is available as a witness that the assertion violation is

achievable—a “counter-example” to the correctness of a program. Such a proof is extremely

helpful to engineers as part of the fault-fixing process (in some cases allowing fault localisation

tools to identify the line of code causing the fault).

Model checking has since been extended to address mainstream programming languages. Track-

ing each state of the program leads to the expected state space explosion, around which tech-

niques such as state compression or state hashing have been developed to improve performance.

A more powerful remedy is the use of symbolic model checking [119]. Here, exploration of a

path through the program stores symbolic representations of the operations taken. The list of
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operations can then be transformed into a formula, and and be reasoned about algorithmically

for a large number of variable assignments, to see whether any lead to property violations. This

avoids the necessity to explore every program path with every possible state, instead manipulat-

ing a large set of states through one path all at the same time. To address infinite state systems,

other techniques define the model checking problem in terms of state transitions, and check a

set of paths through a program, rather than attempting to check all states.

Another model checking technique is predicate abstraction. For this, the program variables are

abstracted into Boolean predicates over those variables, and the program structure is redefined to

be in terms of these predicates—a Boolean program [18]. Control flow is interpreted as normal,

but with the ability to summarise and cache the operation of functions and loops. Condensing

the program to a Boolean program reduces the number of states to be explored, but at the cost

of accuracy. The abstraction is an overapproximation, and leads to spurious counterexamples, a

reported property violation that is not actually present in the source program, and is thus caused

by the abstraction.

To counter this, predicate abstraction tools often make use of a counterexample guided ab-

straction refinement (CEGAR) loop [52]. After producing a counterexample from a program

abstraction, the example is tested against the real program to determine whether it is viable or

an artefact of the approximation. If viable, the counterexample is reported to the user. If not

viable, the counterexample can be analysed to discover where the current program abstraction is

too inaccurate, and it helps determine what portion of the abstraction to refine into a more accu-

rate model. This results in a sequence of spurious counterexamples and abstraction refinements,

from which the model checker slowly develops an ever more accurate model of the original

program. This approach is both sound and complete, but unfortunately non-terminating.

An alternative method to abstract infinite-state programs into a decidable problem is the use

of bounded model checking (BMC)[37]. Rather than modifying the operation of the program

under test, BMC instead bounds the length of program executions that are considered. This

immediately leads to an incomplete verification, but does allow for an un-abstracted, precise

model of the program under test. The chosen bound on execution length can also be scaled to

make the verification fit in whatever memory or time allocation is available, although verification

of longer execution runs provides greater assurance of correctness. Other factors can be bounded

too, such as the number of times loops have been unwound or the number of heap allocations

permitted.

Software model checking techniques tend to condense the logic in the program under test into

a form suitable to be evaluated by automated theorem provers. The model checking problem

itself is NP-complete [56], and such theorem provers, in the form of SAT or SMT solvers [24],

are most suited to solving such problems.
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1.4 Design verification

Rather than attempting to verify general purpose software against a series of properties, another

alternative is to avoid verifying software entirely, and instead to verify a high level model of

the software’s operation. This high level model abstracts away fine grained detail of program

implementation, and instead must be inspected for a different set of properties, for example,

whether a “reset” state is reachable from every path in the model. This approach has been

successful when used to verify concurrency properties such as deadlocking. Tools such as SPIN

and SMV can check models of concurrent processes that interact through shared variables or

message buffers, and verify properties encoded as in-model assertions, temporal logic formulae,

and deadlock.

Such dedicated methods of describing the verification task can also lead to greater levels of

confidence in correctness. The use of process algebras such as the Psi-Calculus [40] to model

concurrent processes allows for formal proofs of correctness to be devised, rather than just

checking that no property violation is reachable.

The obvious flaw to this approach is that the models being verified do not necessarily correspond

to the actual software that forms the final system. While true, having a formal verified model

of how the software should operate is a significant step in the development process whereby

engineers can know that the system being devised is correct in theory and any fault is an imple-

mentation error, rather than a fundamental design flaw.

1.5 Scope of this thesis

This thesis restricts attention to verification of programs in the C programming language. My

justification for this is that the most difficult and critical programming environments, such as

embedded systems and device drivers tend to be populated by C and C++ software, conforming

to additional standards such as MISRA-C [117, p. 1]. Most popular microcontroller architec-

tures are targeted by C and C++ compilers [99, 15, 122, 98], and the programming APIs for

drivers in popular operating systems are given in C [123, 109].

Automated verification provides a verification process that applies directly to the source code

of a program, without the need for transformation or annotation, allowing code to be verified in

situ. The initial barriers to applying automated verification to software are thus low. Within au-

tomated verification, model checking provides the most precise technique for identifying errors

as it delivers a constructive proof (a counterexample) of such errors. It is also a broad and estab-

lished field, with 15 different model checking tools taking part in one verification competition

[33], representing numerous techniques.

Two of the open questions in the field of model checking are those of property specification

and performance. There are multiple ways in which engineers can specify the properties that
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their systems must respect, typically with limited expressibility, a matter which can be improved.

Model checking of software is limited to small programs due to the state explosion problem, and

only very small concurrent programs are feasibly verifiable due to even greater state explosion.

Therefore, I define my research question in three parts:

1. How can model checking be enhanced to allow more expressive description of properties,

specifically through the use of logics such as linear temporal logic (LTL).

2. How can the use of automated theorem solvers be optimised for faster verification times.

3. How can software analysis and transformation reduce the amount of time required to

verify concurrent programs.

To improve the expressive power of property specification, I explore how the verification of LTL

formulae can be performed within bounded model checking. Evaluating LTL properties over the

finite traces produced by bounded model checkers is an open and substantial problem; in partic-

ular, it has not previously been performed with symbolic software model checkers. I present a

technique for symbolically checking LTL formulae over ANSI-C software, and evaluate it on a

piece of industrial software and a benchmark suite.

Performance is always an issue with model checkers, as they are subject to the state explosion

problem. While such tools face a theoretical limit, the size of software that they can feasibly

verify is determined by their performance, which has given rise to events such as the Interna-

tional Competition on Software Verification [31], which seeks to compare the performance (and

accuracy) of verification tools. To explore potential optimisations, I examine the way in which

model checkers encode program traces into formulae for satisfiability solvers, and how they can

be improved.

Concurrent software verification continues to be a unfeasibly difficult challenge. To try and

help matters, I study existing verification techniques and try to apply them to bounded model

checking. These techniques try to deliver performance improvements through the reduction of

the amount of state required to be explored, as well as improving the speed at which each state

is explored. In particular I present the results of applying state hashing, an optimal partial order

reduction, and using a theorem solver to guide the exploration of state space, to concurrent

software benchmarks.

1.6 Thesis structure

In Chapter 2, I explore the fundamental underpinnings of model checking, the various flavours

that have developed, its application to both single threaded and concurrent software, and report

on some of the leading modern model checking tools and their features. I then declare the



Chapter 1 Introduction 25

features I need to perform my research, and select a model checker (ESBMC) for developing

my ideas.

Chapter 3 extends ESBMC to allow for model checking properties written in the temporal logic

LTL over bounded program traces.

Chapter 4 studies ESBMCs encoding of program structures to logical formulae, and how differ-

ent solvers perform when used to solve ESBMCs formulae, and ways in which the formulae can

be encoded to enhance performance.

Chapter 5 explores the potential optimisations that are available for improving the performance

of multithreaded model checking.

Chapter 6 identifies the current remedial work being done on ESBMCs internal structure, devel-

opment being performed by other teams working on ESBMC, and the next areas of research I

will be investigating.

Appendix A contains the software samples used in the evaluation of the techniques pioneered in

Chapter 3.

Appendix B contains result tables cataloguing the performance of tests used to evaluate the

optimisations explored in Chapter 5.

Appendix C explains the detail of how ESBMC encodes the model checking problem to a format

acceptable for SMT solvers.
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Model checking background

The term model checking refers generally to verifying the properties of a formal model, by

checking for violations of the properties of that model. There are numerous ways of applying

this procedure, over different structures and different levels of expressiveness, with substantially

different performance characteristics and trade-offs. Here, I cover the theoretical basis of model

checking, its applications, and the limitations under which it operates. I also identify a number

of existing model checking tools, discuss their strengths, and the particular software cases they

target. The features required for my research are explained, and how the bounded model checker

ESBMC [70] fulfils them.

Structure In Section 2.1 I examine the origins of model checking and how it has evolved to

support the verification of software. Section 2.2 explores the difficulties found in model check-

ing concurrent software. Section 2.3 studies the use of temporal logics to specify the properties

of systems, and how model checkers have been used to verify these properties. Finally, Sec-

tion 2.4 examines the ESBMC model checker, and explains how it can be used in answering my

research question.

2.1 Model checking and Software

2.1.1 Preliminaries

The fundamental idea of model checking [56] is to take the structure of a system and check

that properties hold over all the states of a system. We will initially explore this idea through

finite state machines, which are commonly represented as labelled transition systems (LTS) or

as Kripke structures, of which we shall focus on the latter. To verify this system, we conduct an

exhaustive search for property violations, rather than constructing a formal proof of the property

truth, which can require significant intuition and creativity from the verification engineer [56].

27
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FIGURE 2.1: An example Kripke structure, presented originally in [93, pp. 130]

2.1.1.1 Kripke structure

This form of finite state machine was originally described by Kripke [110], but here I follow the

presentation of Holzmann [93] and define Kripke structures as a five-tuple: (S, s0, AP,R,L):

• S is a set of states;

• s0 is the initial state s0 ∈ S;

• L is a set of labels on transitions;

• R is a transition relation defined as R ⊆ S × S; and

• F is a set of final states, F ⊆ S.

Figure 2.1 illustrates such a system (with no particular meaning). Note that the semantics of

Kripke structures do not require that transitions be bidirectional, or that any particular structure

(such as requiring or prohibiting loops) be present.

Here we see the set of states in circles, with names A to E, and the transitions from one state

to another as arrows. In this particular structure the transitions are labelled with a set of labels

(L) {p, q, r}. A path taken through the structure from the start state is an accepting run if it

terminates in a state s ∈ F , presented here as a state with two circles, E.

From this structure, we can see that the system can sometimes take multiple paths to the same

state in certain places, and that infinitely looping paths can exist. It is also possible for structures

to have unreachable states, or distinct subsets of states where there is no path from any state in
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one set to any state in another set. When considering a system with a large set of states and

transitions, reasoning about the structure can become expensive.

2.1.1.2 Properties

In order to check a property over a Kripke structure, we must have an unambiguous definition

of the correct behaviour, as described in Section 1.2.

The simplest such property is reachability. This asserts that in the structure, there is never a

path from the start state to another specified state (often called the “unreachable” or error state).

While this may seem to be obvious from the structure of the system, because the transitions are

directed, one must actually explore the system to determine the reachable set of states from the

start state—which is problematic if the system state space is large. This idea of reachability can

be extended to other statements, for example that no state with a particular label attached can be

reached from the start state.

The path through a program can also be used to express properties. One might say “after taking a

particular transition between states, that the system must then take another specified transition”.

Extending this, one may make general statements describing the path taken through the Kripke

structures involving time, with the current state in the system placing constraints upon the future

paths through the system, that certain paths must or must not be followed. This form of property

is often best understood when expressed in a temporal logic.

2.1.2 Model checking of transition systems

In the early 90s, tools were developed that provided a language for describing transition systems

and their properties. These tools internally modelled the transition systems as Kripke structures,

against which properties were checked. Popular examples of such tools are SPIN [92] and SMV

[119]. These were typically used to model hardware systems rather than software algorithms.

SPIN uses a description language called PROMELA for state machine description; it is a high

level imperative programming language with conditional branching and variable assignment. Its

primary purpose however is describing concurrently executing processes, a matter we address in

Section 2.2. Properties verified by SPIN can be expressed as reachability conditions by encoding

assertions regarding the state of the system at certain points in the model. Temporal properties

specified in LTL can be provided and checked, one at a time. SMV specifies its own language

for system description, in a form closer to a hardware description language than a programming

language, with state machines and their transitions being the primary constructs. SMV also

permits properties expressed in CTL to be specified that must hold on the system.

Internally, these model checkers compile the system description language to a Kripke structure

with each state representing one valuation of the variables and program counters in the program,

and labels corresponding to propositions about the values of variables in the system [93]. The
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näive approach to checking these systems is to exhaustively explore all paths through the system

until one finds a property violation. However, finite state systems with loops can have an infinite

number of paths through the system. SPIN records visited states to avoid re-exploring previously

visited paths, while SMV computes a fixedpoint over a symbolic formula, explained below.

Another concern of exploring paths through such systems is that the state space grows expo-

nentially as new variables are added to the system—the number of states is the product of all

valuations of all variables. This is a significant barrier to model checking any large system, as

fully exploring the state space quickly becomes unfeasible. This state explosion problem is a

frequent target of optimisations and abstractions to expand the size of program that can be feasi-

ble verified. Tackling the state explosion problem is an ongoing battle in the field of verification

that has lasted decades and is likely to continue for many years.

Once a property violation has been discovered in a system, the model checker is then able to

examine the path that lead to the violation. This path can be formatted into a counterexample

or witness, a constructive proof demonstrating a viable path through the system that leads to a

behaviour violating one of the properties being checked. This is one of the most popular features

of model checking [55], as it gives the verification engineer a concrete and easily understood

proof that identifies the property that is violated, and an example of why this is the case, which

can be used to replicate the violation.

2.1.3 Encoding approaches and algorithms

Continuing the focus on model checking transition systems, the available tools differ most sig-

nificantly in the representation of the current search state, the internal state of the algorithm

checking the system. The search state can correspond to a particular state in the structure, or

perhaps a particular path through it. The first solutions to this problem came from SPIN and

similar tools, which are explicit state model checkers [93, pp 168]. This is where the state of the

system under test is represented as explicit valuations of all variables and program counters in

the model. These valuations are concatenated in some canonical order to create a vector of bits,

corresponding a particular state of the Kripke structure in its entirety. One may then proceed

to check the model by the use of a depth first search, where each transition through the Kripke

structure following from the initial state is explored, storing each distinct state reached into a set

of explored states, and backtracking when an already explored state is discovered.

This approach is sound and will terminate, as a finite amount of state space has to be explored.

The state space explosion problem, however, can make it unfeasible. The memory required to

store all states is proportional to the state space of the system under test; as such complicated

models will consume a vast amount of memory. As a result much research has been applied

to reducing the memory overhead of such representations: compressing, or even hashing them

(discussed in Section 2.2.3.2).
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Another way of solving this problem is to formulate a symbolic state representation, where the

values of variables are not explicitly stored, but their values are symbolically represented by

the state encoding. One way to rationalise this is to imagine storing the valuation of a variable

as a range, instead of enumerating each particular value that it might have in distinct states.

Operations on the variable values will require these ranges to be refined and altered during

exploration, but the scope for reduction in memory consumption is considerable.

One of the first practical implementations of such an approach was invented by McMillan [119].

Model checking problems are encoding in µ-calculus [46], which describes a fixedpoint: states

are labelled as to whether they fulfil the property or not, and a binary decision diagram (BDD)

[45] is built to evaluate which states can be reached, according to the valuation of variables in

the model.

Following the presentation of [45], a BDD is defined as a directed acyclic graph 〈V,E〉, with

V the set of vertexes and E the set of edges. Each vertex has either zero or two children.

Leaf vertices are labelled true or false, and all other vertices are labelled with a proposition

about variables in the system under test. We consider here ordered BDDs [119, p. 41], where

every path from the root vertex of the graph has the same sequence of propositions labelling

the vertices along the path. A model checking tool (such as SMV) can then summarise the

operation of functions (or transitions, or whatever is appropriate) into a decision tree represented

by a BDD, with propositions applied to input values, and the true/false labelling of leaf vertex

corresponding to whether a program property is violated if the propositions along the path to the

vertex hold.

Then, a model checker can repeatedly compose BDDs [46] representing the operations of the

system under test (the algorithms for which are not explained here), essentially symbolically

exploring the path through the program, manipulating sets of states at a time. When a fixedpoint

is reached, all paths have been explored. The produced BDD can then be examined to see

whether it contains any leaf nodes signifying a program property is violated—if it does, the path

through the program to that violation corresponds to the path through the BDD’s propositions.

The pitfall of BDDs is that the memory space savings available depend heavily on the choice of

propositions about the variable valuations, and the order in which they are evaluated [119, p. 41].

Some BDDs do not have an optional ordering of propositions at all, with all orderings leading to

inefficient amounts of memory usage. In addition, once a BDD has become sizeable, attempting

to re-balance it to reduce its size becomes a particularly unwieldy and time consuming task [37].

Finally, the use of a fixedpoint to evaluate what states are reachable prohibits the application of

this process to systems that may have infinite state space (see next section).
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2.1.4 Bounded model checking of software

Applying the concepts of model checking to software is a much more complex task. General

purpose programming languages are Turing-complete, and as such attempting to prove prop-

erties such as reachability is undecidable [42]—there can be no algorithm that finds whether

a particular program state can be reached and always completes [152]. Additionally, general

programs can theoretically use an infinite amount of memory. This leaves two options to those

wishing to implement a model checker: either accept that their checking software may never

complete, or accept some unsound or incomplete approximation that will.

Instead of attempting to transform the program under test into a state machine for evaluation,

we can instead apply bounded model checking (BMC) to the problem, as described by Biere et

al [37]. Program states are still formalised as a valuation of all variables in the program and the

location of the program counter, with the set of states potentially infinite. To reason about this,

program statements are considered to be transitions between one state and the next, characterised

by the transition relation R(si, si+1). Starting from some initial state s0 ∈ S, the program is

interpreted as being a sequence of these transitions, each transforming the current program state

to a new state. After some number k of transitions has been taken (the bound), exploration

ceases. The final of state is evaluated to determine whether it violates a property, by checking

whether the verification property φ holds when using the final state’s variable valuation.

Formally, this procedure can be formulated thus:

ψ = s0 ∧
k−1∧
i=0

R(si, si+1) ∧ ¬φk

Here, from the initial state transition function R is applied to the program states k times, to

represent the program state after k transitions. The property φ is then tested over the final values

of the variables in the program. Overall, this formula can only be true if there is a consistent

assignment of variables that makes ¬φ true. If such an assignment does not exist then the

property holds; otherwise the property is violated. We denote ψ the verification condition, which

we test for satisfiability to check whether a property violation exists in the unrolled program.

Informally, this formulation of the problem leads to us evaluating a prefix of a program execution

(assuming the program does not terminate in that time), where the property is checked after the

program has made k state transitions. This can simply be a bound on the number of instruction

transitions taken, or more elaborate constraints such as bounding the number of times that loops

are unrolled. The problem can also be reformulated to check every state in the prefix for a

property violation.

Such constraints on the checking of the program under test mean that we now perform an in-

complete analysis, referred to as an underapproximation. Checking a program up to the bound

k allows us to detect that the desired property holds over some of the execution; however this
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does not cover all behaviours, and a property violation occurring after k + 1 steps would not

be detected. Bounded model checking thus is relegated to discovering the presence of property

violations, rather than having the ability to demonstrate their absence. However, if we knew that

the program has a maximum length of some n steps, then we could set the bound to that level

and still be assured that the model check is complete. Unfortunately determining this value has

been shown to be at least as hard in general as model checking [60].

The verification remains sound—the program unwinding up to bound k is still an accurate exe-

cution of the program, and as such any counterexample found by the model checker will be a true

property violation in the program, as opposed to a spurious error introduced by an abstraction.

That being said, some care must be taken to ensure this is the case. If the bound is applied to

the number of times that loops are unrolled then we must deal with the case where the program

can execute a loop further, but the unwind bound prohibits it. In this scenario, the next state of

the program is undefined. The simplest solution here is to discard such traces—thus restricting

exploration to paths where the program exits the loop before reaching the bound. This preserves

soundness, and the discarded traces are victims of the incompleteness of the model check.

This model checking approach also requires a new state encoding approach, suitable to checking

a partial trace of the programs computation against a property for consistency, without an explicit

definition of a program state. A suitable tool for this is a SAT solver, which takes a propositional

formula, explores the possible assignments to the variables in the formula, and finds whether

such an assignment can satisfy all assertions in the formula, otherwise it is unsatisfiable. Recent

advances have led to SMT (satisfiability modulo theory) solvers, which allow more expressive

logics for describing the formula, including first order arithmetic operations and theories of

arrays. SMT solvers also allow the use of quantifiers, but at the expense of decidability, thus

they are avoided for bounded model checking.

Encoding the bounded trace of the program under test to a SAT solver is straightforward. The

state space of the program can be represented as a set of variables in the SAT solver, that are

updated with some calculation upon each state transition in the trace. Once the encoding of the

formula is complete, assertions are added claiming that a property violation does occur. The

SAT solver then attempts to find a valuation of the variables in the program that satisfies all the

state transitions and enable the property violation assertion. If the formula is unsatisfiable then

no such violation exists, while a satisfying assignment shows that a violation does exist, and the

valuation defines the variable values in the program along the violating path.

In addition to supporting the use of bounded model checking, this is also a symbolic encoding

(Section 2.1.3) of the model checking problem, similar to BDDs, as it avoids having to explicitly

represent explored states in memory. SAT has also been the subject of significant development

effort in recent years, with international competitions evaluating the effectiveness of solvers and

algorithms. This scenario ensures that SAT based solving is at the leading edge of decision

procedure performance. The accepted wisdom is that, while SAT is generally NP-complete,

there are numerous subclasses of problems that SAT solvers solve in polynomial time.
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2.1.5 Other model checking techniques

We now briefly cover model checking approaches other than BMC. These are methods that

perform a model check with some alternate abstraction or approximation. While not the central

aim of this thesis, they are of interest in understanding exactly what the benefits of BMC are, as

well as potentially inspiring new algorithms for approximating within BMC.

2.1.5.1 Predicate abstraction and CEGAR

The opposite of the underapproximation seen in bounded model checking is to overapproximate

the program under test, that is, abstract it in such a way that the model being checked exhibits

more behaviours than the original program does. If a property holds on this overapproximated

system then it holds on the original, but the presence of a property violation does not guarantee

that the original system violates that property (the analysis is complete, but unsound). Such

property violations are referred to as spurious counterexamples.

Overapproximation can still form a useful part of the model checking approach. One such ap-

proach is known as predicate abstraction: the source program is abstracted from some input

language into a Boolean program, where all variables are Boolean valued, and represent some

predicate on an input program variable. This can then be coupled with counterexample guided

abstraction refinement (CEGAR): from an initial abstraction of the system, spurious counterex-

amples are analysed to determine where the abstraction departs most abruptly from the original

program. The abstraction is then refined to eliminate this path, and the new abstraction is model

checked again. When performed iteratively this creates a refinement loop where the abstraction

of the program under test is slowly refined, until either a counterexample is found that is feasible

in the original program or the property is found to hold.

A number of model checking tools make use of CEGAR [18, 54, 35, 36]. One limitation on

its technique is that, as it is complete and the property checking problem is undecidable, the

CEGAR method is also undecidable. Empirical evidence [18] suggests this does not occur

frequently though.

2.1.5.2 K-induction

Inductive proofs are powerful, and would be useful in automated verification. It does not, how-

ever, cleanly apply to software or the model checking problem. One could verify a base state of

a piece of software, however the inductive step would require proving that if a property holds in

any state, it holds in all subsequent states, which is more or less a reformulation of the model

checking problem. Sheeran et al. [146], however, in the context of explicit-state model check-

ing of a hardware transition system, determined a method to create an inductive step based on

bounded traces of a transition system that was both efficient to produce and gave the necessary

assurances of correctness.
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For the inductive step, they postulate that it is not possible to reach a violating state after k

transitions from any other state. Informally, imagine that we start an exploration in a system

at any point, with all variables having free values: proceed k transitions to a state that has a

property, and then assume that the property is violated. If this proposition is unsatisfiable, then

we know that there is no state in the program that can trigger a property violation after k steps.

Sheeran et al. show that for a particular structure of program (loops that have been unrolled k

times) this proves that the property will never be violated, if the initial k unrolls of the loop do

not trigger a property violation either.

A significant limitation of their algorithm is that, to achieve decidability, they limit the paths

explored to only cover those that do not contain duplicated states. This maintains completeness

as already explored states need not have their successors checked. However identifying duplicate

states is much more difficult to achieve in symbolic model checking. Donaldson et al. [75]

and ESBMC [126] have implemented induction for software, however the former requires loop

invariants to be provided, and the latter can produce indeterminate “unknown” results.

2.1.5.3 Craig Interpolants

Inductive invariants can be produced by other means. Craig interpolation is a method of cal-

culating an interpolant between two formulae: a proof of why it is impossible for the two to

be both consistent. When considering model checking, for a particular trace we can take the

formula representing the variable valuations up to the final state in the trace, and compute an

interpolant between that and a formula defining a property violation.

To make use of this interpolant, we can attempt to compute an inductive invariant by taking a

proposition, producing a fixed point of states in which a proposition holds, and then show that

the interpolant is implied by the invariant. Then, so long as the invariant holds in the initial state

too, we can be sure that the property violation state is unreachable, as all reachable states are

provably inconsistent with the property violation.

While useful, the use of a fixedpoint means that Craig interpolation cannot be performed on

infinite state systems (such as C programs in general), and thus is not of use to us here.

2.2 Model checking concurrent systems

One of the most difficult tasks in engineering is the creation of safe systems that operate concur-

rently. Examples of this include hardware processes that interact with other hardware processes,

and concurrent software processes (commonly referred to nowadays as multithreaded software).

Crucially, some form of shared resource is required, such as shared memory, queues or message

passing interfaces. Otherwise the system merely contains multiple processes running indepen-

dently of each other. The difficulty arises from the fact that, while a single system can have a
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void *thread1(void *a){
while (true) {
if (x < 5) {
insert_job_item();
x++;

}
}

}

void *thread2(void *a){
while (true) {
if (x > 0) {
fetch_job_item();
process_job();
x--;

}
}

}

void *thread3(void *a){
while (true) {
if (x > 0) {
x--;
fetch_job_item();
discard_job();
}

}
}

FIGURE 2.2: An example of three threads attempting to synchronise through a shared variable,
x. Assume the functions are started simultaneously as separate threads, and that x is initialised

to zero.

well understood procedure and set of states, there is (normally) no guarantee about what state

another concurrent system is in, when communication occurs. There may also be no guarantee

that the progress of time is the same for each concurrent process. This leads to the number of

states that the whole system can possess being the product of all the states of all the concurrent

processes it contains. This number of states increases exponentially with each new concurrent

processes; this is another manifestation of the state space explosion problem. Here, we consider

how this problem may be effectively model checked, without committing to a particular model

checking method.

Errors that depend on concurrent systems interacting in a particular order, often referred to

as race conditions, are notoriously difficult to identify and eliminate. Even once it has been

identified that there is a concurrency issue, the particular sequence of events happening in a

particular order that causes it may happen rarely, and thus difficult to reproduce. For similar

reasons, testing for the presence of concurrency bugs is ineffective, as it requires fine grained

control of the order in which different parts of the systems execute.

The difficultly of writing concurrent software has been known for much longer than model

checking tools have existed [55]. However, the growth in the number of multi-core processors

entering the consumer market and the corresponding increase in software using multiple threads

of execution has led to a new-found urgency in verifying concurrent software.

The interactions between concurrent systems may also be poorly defined, or even be machine

dependant. Take for example, the C program in Listing 2.2, containing three concurrently ex-

ecuting functions communicating through a shared variable x, with one thread generating jobs

and the other two consuming them. From the plain meaning of the program, we would expect

x to represent the number of unprocessed “jobs” in the program, and for there to be never more

than five unprocessed jobs, nor for the consumer threads to call fetch job item when there

are none available.

Numerous factors, however, can further complicate this scenario. A memory cache could delay

writes to the shared variable, access to memory may not be atomic, the processor may re-order

writes or the compiler can elect to hold updated values in registers indefinitely. This can lead to

the shared variable x appearing to have different values to different threads. These factors can
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1 void *thread1(void *arg) {
2 pthread_mutex_lock(&lock);
3 progress_signal = 1;
4 pthread_mutex_unlock(&lock);
5 return NULL;
6 }

1 void *thread2(void *arg) {
2 pthread_mutex_lock(&lock);
3 while (progress_signal == 0)
4 ;
5 progress_signal = 0;
6 pthread_mutex_unlock(&lock);
7 do_something();
8 return NULL;
9 }

FIGURE 2.3: Two threads synchronising using a shared variable, with locking to prevent con-
flicting access, but a deadlock.

1 void *thread1(void *arg) {
2 pthread_mutex_lock(&lock1);
3 pthread_mutex_lock(&lock2);
4 progress_signal = 1;
5 pthread_mutex_unlock(&lock2);
6 pthread_mutex_unlock(&lock1);
7 return NULL;
8 }

1 void *thread2(void *arg) {
2 pthread_mutex_lock(&lock2);
3 pthread_mutex_lock(&lock1);
4 progress_signal = 0;
5 pthread_mutex_unlock(&lock1);
6 pthread_mutex_unlock(&lock2);
7 return NULL;
8 }

FIGURE 2.4: Two threads acquiring locks before updating progress signal, with a fatal
lock ordering error

depend entirely upon the architecture of the machine that the code is compiled for, or in even

worse cases the actual device that the code executes upon. In the face of this, it is clear that it is

necessary for language standards to define how concurrent software behaves and interacts1, and

provide guarantees on what is considered correct behaviour.

Computer scientists have addressed the problems of concurrency by introducing new program-

ming constructs that enable synchronisation between concurrent threads. The most common of

these is a “lock”: one should “hold” a specific lock to access a particular shared resource, and an

underlying library or language facility ensures that only one thread may hold that lock at a time

(normally by blocking execution until the lock is acquired). This leaves open the possibility that

the programmer does not perform the correct locking before accessing the resources, although

such conditions can be detected more easily than race conditions. So long as locking principles

are obeyed, all accesses to the shared resource are serialised, in that threads access the resource

only one at a time. Furthermore, run-time and processor optimisation’s that might interfere with

serialisation are inhibited. This prevents dangerous concurrent accesses, but introduces its own

failure mode, that of deadlock.

A deadlock is a situation where the entire set of concurrent threads are indefinitely blocked,

waiting for some condition to become true before continuing to execute. If all these conditions

are internal to the process (i.e., will not be triggered by external stimuli), then none of the threads

will ever resume execution. Examples of this can be seen in Listing 2.3 and Listing 2.4. In the

first, thread 2 acquires a lock before waiting for an action from a second thread to signal it
1Such as the recently agreed C11 standard, which specifies system behaviour when memory shared between

threads is accessed.



38 Chapter 2 Model checking background

should continue execution, while thread one attempts to acquire that lock too before signalling.

In the second example, we see a lock ordering error—two threads attempting to acquire two

locks in different orders, which can result in each thread having one lock, and neither being able

to continue until the other lock is released.

2.2.1 Verification approach

The verification of these systems is difficult—how can we represent concurrent actions in a

state transition system? An obvious approach is one of sequentialisation [115], where one

formulates a single threaded program that accurately models one behaviour of the multithreaded

program. One way to achieve this sequentialisation is by interleaving the concurrent threads of

a program. This is where, for a set of threads, one nondeterministically selects a thread to be

executed and performs the next transition available to that thread. The product of this approach

is a sequence of transitions from different threads, representing a single threaded trace of steps,

against which one can then attempt to apply normal model checking techniques. The success

of this approach depends on the system not having any truly concurrent behaviours [115]: a

particular piece of memory for example can only ever be written or read by one thread at a time,

and apparently concurrent accesses to it eventually becomes sequential accesses in some order.

Should a resource actually support more than one operation on itself in a single step, and the

result is not representable by interleaved single steps, then this approach fails.

Consideration must also be given to how threads are scheduled, i.e. which of the available set of

runnable threads will be run, and in what order. An acceptable schedule is to run one thread to

completion followed by running another thread to completion, and so forth. This assumes that

all threads either terminate or have their execution bounded in some way. That schedule may be

a valid behaviour of the program, but not particularly useful, as it does not check any complex

interaction between threads. To fully explore and check all behaviours that the program can

exhibit, one must thus explore all schedules of the concurrent threads, to cover all the states in

the system that can be reached through interleaving. This is the realisation of the state explosion

problem, in that the state space to be checked increases exponentially as we introduce more

states to individual threads.

Switching which thread is being executed while creating the trace is called a context switch, in

reference to the way in which processors change what thread they are running.

The process of exploring all the schedulable traces is known as computing the reachability tree,

which represents all the global states reachable through interleaving threads. Each edge of the

tree represents the execution of a transition, each vertex represents a state in the program where

a context switch may be taken, and has one child edge for each thread transition that may be

taken in that state. The path from the root node to a leaf represents the entire execution path of

a single trace with all threads run to completion.
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Some effort has already been put into identifying concurrency errors without having to resort

to formal verification. LTL properties have been verified in the course of runtime verification

for example [28]. Other tools capture thread executions during test procedures, and attempt

to replay them with threads executing in different orders to reach unexpected states—CHESS

[131] follow this approach. These methods do not allow for discovery of faults ahead of time

however, and so will not be examined further.

2.2.2 Encodings for multithreaded verification

The explicit model checking method of SPIN and similar tools extends naturally to support

explicit sequentialisation. The depth first search of reachable states can be augmented with the

state vector containing the global state and the state local to each thread, then allowing the search

algorithm to execute a transition from any available runnable thread. The search then covers all

states reachable as the result of any possible thread interleaving.

This depth first search technique can be applied to BMC too. ESBMC’s primary search method

[68] is to unroll each thread to completion while interleaving thread transitions (in an initial

arbitrary order), and store each state along the way. Then, when the current exploration path

has no further transitions and if a property violation has not been found, it backtracks to the

previous state, and then takes a different context switch. Repeatedly applying this method,

and backtracking further when all context switches from a particular state have been explored,

ensures that all possible interleavings are considered. In effect, the entire reachability tree is

being exhaustively explored from an initially deep path, and working backwards from there.

This is essentially the same depth first search algorithm as SPIN, but without the storage of

explored states (which does not affect decidability as it only operates on bounded traces).

More symbolic approaches are possible too. Another search method of ESBMC is to perform

the same depth first search as describe above, but instead of checking each trace produced by

the scheduling algorithm individually, a single SAT formula is composed out of all the traces

explored. This follows the same depth first exploration path as described above, but rather

than checking for property violations along each explored path, the formula for each path is

accumulated into the same SAT formula. The SAT test of the resulting formula then checks all

paths down all interleavings of the program. This approach attempts to trade additional formula

size for reduced solving time: the single SAT formula containing the entire reachability tree

is larger than the single path formulae from the depth first search approach, but the solver is

able to eliminate entire subtrees of paths if it determines a particular transition cannot be taken.

Empirical evidence [68] suggests however that this approach is inferior to the depth first search

due to memory usage as well as SAT solving time.

Much more radical symbolic encodings exist, with several tools leaving the exploration of inter-

leavings to the SAT solver. The Lazy-CSeq tool [100] transforms concurrent programs to par-

tially execute portions of threads and, using general BMC tools, allows nondeterminism in the
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1 void *t1(void *arg) {
2 int *ap = arg;
3 int local_id = 1;
4 ap[x++] = local_id;
5 return NULL;
6 }

1 void *t2(void *arg) {
2 int *ap = arg;
3 int local_id = 2;
4 ap[x++] = local_id;
5 return NULL;
6 }

1 void *t3(void *arg) {
2 int *ap = arg;
3 int local_id = 3;
4 ap[x++] = local_id;
5 return NULL;
6 }

FIGURE 2.5: Three threads synchronising an index through the x variable, and a mixture of
local and global operations. Assume that all three functions are started as threads simultane-
ously, that x is initialised to zero, and the argument to each thread is an array of at least three

elements in size.

program to arrange the different orders in which portions can be arranged. CBMC [11] executes

threads to (bounded) completion, replacing accesses to shared memory with special variables,

and allows the SAT solver to arrange the order in which shared memory accesses occur between

threads. Both these techniques are examples of encoding the exploration of interleavings into a

single formula where the solver can control the order of interleavings.

2.2.3 Optimisation

The most significant barrier against the application of model checking techniques to real-world

concurrent systems is the state explosion problem. Thus our attention turns to how one can

check properties of such systems while keeping the number of states that one has to explore

small, a matter that is the topic of much research in the field. This subsection explores existing

approaches, with my own contributions discussed in Chapter 5.

2.2.3.1 Partial order reduction

One observation made regarding the state explosion problem when checking concurrent software

is that, while a large number of thread interleavings exist in relatively small programs with a

small number of threads, the set of distinct states arising from these interleavings tends to be

smaller. Take for example Figure 2.5, in which three threads store an integer into an array, at

an index determined by the global variable x. Assume for this example that we execute each

statement of the program atomically and interleave at the end of each statement. Each thread

has several states, and we could conceivably interleave the statements in 64 different orders.

However, there are still only six different global states that the program may end in once each

thread has completed.

To understand why this is, consider the concurrent system as a Kripke structure, where each

state represents the global system state and all instructions in all threads form the transitions

between states. In this system, we can classify a pair of transitions (in different threads) as

either being independent or dependant of each other. Intuitively, this indicates whether or not

the pair, if executed one after an other, will result in different states depending on the order. A
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partial order reduction (POR) is where we identify independent transitions and only explore

one ordering of them: all system states are still explored, but with fewer interleavings.

This approach is formally presented in [86], which we follow here. First, define T as the set of

all transitions possible in the Kripke structure. Transitions are said to be enabled in a particular

state if that transition can be taken. We represent a transition t1 ∈ T as
t1

s→ s′, where s, s′ ∈ S
are the source and destination state of the transition, respectively. Let D ⊆ T × T be a relation

between a pair of transitions. If the pair (t1, t2) 6∈ D, this signifies that the two transitions are

independent, and throughout the state machine this means that:

1. If t1 is enabled in state s, with target state s′, then either t2 is enabled in both s and s′, or

in neither. Thus, t1 cannot disable or enable the t2 transition. The inverse must hold too,

i.e. t2 may not enable or disable t1.

2. If both transitions are enabled in s, then both
t1t2

s→ s′ and
t2t1

s→ s′, i.e. if both transitions

are taken, but in a different order, then we still reach the same state.

Applying this to the state space exploration of a concurrent system, this means that if either of

two transitions t1, t2 may be taken, and (t1, t2) 6∈ D then we may pick one ordering of the two

transitions and not explore the other, and be assured that we are still exploring all reachable

states. Only dependant transitions need different orders exploring.

The difficult task is identifying the dependency relations between transitions, particularly when

factors such as pointer indirection arise which makes it difficult to determine which variables

are read and written in a particular expression. Approximations of the classification that do not

reduce the completeness of the search can be useful, however.

In the context of explicit-state model checking, initially partial order reductions computed dif-

ferent sets of transitions from a particular state, for example persistent-sets and sleep-sets [84],

that identified which transitions must be explored and which need not, respectively. These tech-

niques statically analyse the structure of the model, and cannot be effectively used to verify

general software where features such as indirection cannot be statically analysed [81].

Instead, [81] suggests a dynamic partial order reduction, analysing software as it is explored

and identifying dependant interactions, in the context of stateless search model checking [103].

Here, a scheduler explores thread schedules instead of states, an approach used for example by

the CHESS [131] and Verisoft [85] model checkers, and uses the partial order to identify where

the schedule should backtrack to during exploration. Research into the most efficient method

for this continues [9]. These techniques constitute an explicit exploration of interleavings, but

in a nonterminating manner: they do not store states or detect cycles in the state space, and so

never terminate or have a guarantee of completeness.
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Other techniques support the symbolic encoding of partial order constraints, as explored in

[159, 106]—however, they only ever deal with finite state abstractions of the program under

test.

Applying partial orders to model checking (that fully explores state space) of concurrent general

programs is uncommon [11] and has few examples [11, 66, pp. 122]. We shall revisit partial

order reductions for concurrent software verification in Chapter 5.

2.2.3.2 State hashing

Given that we wish to eliminate redundant states that do not need to be explored, we may just

generally say that we wish to avoid exploring duplicate states. This approach is already taken

by the depth first search of model checkers such as SPIN. The memory consumption for storing

these states and time spent searching for duplicates, however, increases as one might expect from

state explosion. A method developed to tackle this is to, instead of storing the explored states

themselves, compute and store a digest or hash of that state, which uses much less memory

when stored [95]. One can then detect the exploration of duplicate states by computing the hash

of the current state, and looking up whether that hash has been explored before.

A hash can be thought of as a summary of some information: the input state data is passed

through a mathematical transformation to become another piece of data (the hash) of fixed width,

typically only a few bytes. This item can then be stored in an ordered set or some other structure

that can test for the existence of an item quickly. SPIN takes a different approach [93, pp. 206-

209] and instead allocates an array of bits (of size 2n, where the hash value is of bit width n),

marking the bit corresponding to the hash of an explored state as 1 and unexplored states 0.

Hashes are designed to make it unlikely for different inputs to produce the same output; they are,

however, fundamentally an abstraction of the input that loses data, meaning that it is possible

(however unlikely) that when processing a previously unexplored state, the hash value of its

state vector will match the hash value of a different, already explored state. This is referred to

as a hash collision [95]; the effect is that an unexplored state is discarded due to the incorrect

appearance that it has already been explored. This damages the completeness of the model

check; checks performed using state hashing will still generate sound counterexamples if a fault

is found, but cannot be used to guarantee the absence of faults.

State hashing has proved popular in explicit state model checking, appearing in SPIN [92] and

other popular model checkers [39, 21, 129] applied to system models and real-world software

alike. State hashing has not been applied to symbolic model checking techniques, as they ma-

nipulate sets of states in each operations.
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2.2.3.3 Context bounding

Once we concede completeness in multithreaded model checking, context bounding becomes

a viable option. The number of context switches taken between threads during scheduling is

bounded — simply implemented by inhibiting any further switches between threads after the

bound has been reached. The effect is that the reachability explores all paths that contain that

number of context switches, and none that exceed the bound, damaging completeness. The re-

duction in number of interleavings that must be explored is vast: whereas before nt interleavings

would be explored (for n Instructions in the trace, with t threads), we instead explore n × kt,
with k the context bound. This bounded analysis is still useful as empirical evidence indicates

that many multithreaded program bugs can be discovered in a relatively low number of context

switches [138, 130].

2.2.3.4 Symmetry reduction

Another technique for state reduction is reducing symmetry through identifying equivalent sub-

trees of states and relations in the model, and subsuming them into a reduced subtree [57]. This

amounts to computing orbit relations that reduce the original model to a quotient model, which

has been shown to be NP complete [57], and is a serious barrier to reducing symmetry [124]

in symbolic state representations [79]. Explicit state model checkers have found efficient appli-

cations of symmetry reduction, however [91, 41, 39]. A detailed study of symmetry reduction

techniques can be found in [74].

2.3 Temporal logic

Temporal logics take propositional logic and extend it with modal operators related to time—

expressions can be made about the past and future. These logics are important in system ver-

ification, as they allow a richer definition of the correct behaviour of the system, for example

that “whenever a request is received, a response is delivered”, which fundamentally requires that

past states affect the validity of future states. While it is possible to jerry-rig the system under

test to store facts about past events and test them during verification, thus expressing them as

reachability, it is invasive and much more difficult to understand.

We say that a temporal formula holds over a system if all possible executions of the system

satisfy the behaviour described by the formula. If any execution does not comply, then the

formula is violated.

The most popular temporal logics are linear temporal logic [136] (LTL) and computation tree

logic [56] (CTL). These express properties about the system under test in terms of traces of

states and paths, respectively, also referred to as linear time and branching time. The difference

is that expressions about the future in LTL refer to all the future states that the program may
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reach, whereas CTL quantifies over future paths that the program may take: the result is that

some properties can be described in CTL but not in LTL, and vice versa [55].

To briefly illustrate the difference: LTL cannot express any CTL formula that requires an exis-

tential quantifier, as LTL does not have any explicit quantifiers itself (it is implicitly quantified

over all traces of states). The LTL formula FGp (“In the future p always holds”) can be ex-

pressed in CTL as AFAGp, however it will not hold over systems where an infinite number of

paths can be generated that pass through a state ¬p, as not all paths have a future where AGp

holds, regardless of whether such a state is eventually reachable.

Empirical evidence suggests that engineers find LTL formula easier to understand compared to

CTL [29], as it requires thinking about all computations simultaneously, as opposed to single

computations individually. For this reason, LTL is more commonly used in model checking

of software [38, 97, 104], and as a result I will focus on LTL for the rest of this thesis. The

combination of all the CTL and LTL operators, however, make up the more expressive logic

CTL*, which can express all behaviours from both sublogics, as well as some behaviours that

can be expressed by neither.

2.3.1 Formulation

In the standard semantics [136], LTL formulae are interpreted over traces over a given alphabet

Σ of symbols, i.e., possibly infinite words a0a1 · · · , with ai ∈ Σ. In LTL model checking, it

is common to consider a non-empty set of atomic or primitive propositions Prop and to define

Σ = 2Prop . In the context of our work, each symbol a ∈ Σ denotes a valuation, the set of

Boolean expressions over the global variables of the C program that hold at a given time; it can

be seen as a possible world in a Kripke structure. We use u ∈ Σ∗ to denote finite traces, w ∈ Σω

to denote infinite traces, and ε to denote the empty trace. We further use wi = wiwi+1 . . . to

denote the suffix of an infinite trace; for a finite trace of length n, ui = uiui+1 · · ·un−1 if i < n

and ε otherwise. We finally use the notation aω to denote the infinite trace consisting of the letter

a ∈ Σ only.

Following our presentation in [128], we define the operators of LTL thus:

Definition 2.1. LTL formulae are defined over primitive propositions, logical operators and

temporal operators as follows:

ϕ,ψ ::= true | false | p | ¬ϕ | ϕ ∨ ψ
| Xϕ | Fϕ | Gϕ | ϕUψ | ϕRψ

Here, p is some proposition about the state of the system, for example whether the current state

in a Kripke structure has a particular label. The Boolean constants and logical operators ¬ and

∨ are defined in the usual way, with ∧ and =⇒ following. The temporal operators are “in the

next state” or next (X), “in some future state” or eventually (F), “in all future states” or globally
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(G), until (U), and release (R). ϕUψ means that ϕ must hold continuously until ψ holds; ψ

must eventually become true. ϕRψ means that ψ must hold now and continue to hold either

until ϕ becomes true as well, or forever (if ϕ never becomes true). All temporal operators can

be defined in terms of X and U [119], but the fuller logic makes LTL easier to understand.

While LTL does not feature any quantifiers, all LTL expressions are implicitly quantified over

all the traces that a system may produce. This limits LTL to statements that must always, or

never, hold.

Some simple examples of LTL formulae are as follows: to say that a condition p must never

be true, we would write G¬p. A requirement that if a condition p is ever true (for example: “a

request is made”) that the condition q eventually becomes true (“a response is given”), we would

write G(p =⇒ Fq). To say that every request received a response, we could write G(p =⇒
(pU(¬pUq))), which holds if p is always eventually followed by q, without p becoming true in

the meantime.

2.3.2 Büchi Automata

It has been shown [155] that LTL formulae can be exactly converted into Büchi automata which

accept the same set of infinite traces that the LTL formulae hold over. Evaluating LTL formulae

as an automata is a staple of model checking techniques, as we shall see in the next section.

Büchi automata (BA) are finite-state automata over infinite words first described by Büchi [47].

We follow Holzmann’s presentation [93] and define a BA as a tuple B = (S, s0, L, T, F ) where

S is a finite set of states, s0 ∈ S the initial state of the BA, L a finite set of labels, T ⊆
(S × L× S) a set of state transitions and F ⊆ S a set of final states. B may be deterministic or

non-deterministic. A run is a sequence of state transitions taken by B as it operates over some

input. A run is accepted if B passes through an accepting state s ∈ F infinitely often along the

run.

2.3.3 Existing verification techniques

Verification for properties expressed in CTL tend to represent the state space of the system

symbolically [46, 119, 120], computing a fixedpoint of all reachable paths to find any that violate

the given property. As mentioned, we will not be studying CTL in this thesis.

The accepted method of verifying a LTL formula over a system is to interpret the propositions

of the formula as propositions over the systems variables, convert the formula into a BA, and

then exhaustively explore all paths through the program with the BA consuming each state as an

input. Over an infinite trace of states, the BA accepts if the formula holds.

In practice, as infinite traces of states cannot be fully computed, tools instead search for ac-

cepting loops through the system under test [162]. SPIN [92] inverts the LTL formula and then
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performs a depth first search for loops through the system under test where the BA will accept—

if one is found, then the inverted formula holds, and thus the original property does not. This

inverted formula is frequently referred to as the never claim.

Explicit exploration of state space for LTL model checking has been shown to be PSPACE

complete [147], and in [58] Clarke et al. show that LTL model checking can be transformed to a

form verifiable by symbolic CTL model checkers. Sebastiani et al. [145] study several different

encodinigs and propose their own, while Rozier et al. [144] survey all the available LTL model

checking tools and find the symbolic approach to be substantially better than any other. Biere

et al. [37] show that LTL can be model checked through a bounded trace of state transitions,

but only if the finite bound could be determined. A full survey of symbolic model checking

techniques is in [143].

Of all the model checking techniques I examined, none were directly applicable to the verifica-

tion of software, instead limiting themselves to either models extracted from software [94, 80]

or embedding fragments of C in the verified model [151, 93, pp. 495]. These approaches limit

the verification model to a finite state space, thus avoiding the underlying problem, which is

that the infinite traces LTL is defined over cannot be evaluated over models with infinite state

space. Bounding the length of the program explored [53] allows property violations within the

explored prefix to be identified, but is only of use for finding violations of safety properties.

A verification technique related to model checking is runtime verification, where a monitor

within a system continuously observes its operation, identifying whether the system is violating

a property. Such properties can be specified in LTL [16] and verified on-the-fly, however with

finite traces it cannot always conclude that the property holds or is violated, instead yielding an

indeterminate result [26]. Bauer et al. study different semantic interpretations of LTL formulae

with regard to such finite traces, and propose their own to give meaning to indeterminate results

[27].

We shall revisit LTL model checking in Chapter 3, with particular focus on how to evaluate LTL

over C programs and how to interpret LTL over finite traces.

2.4 ESBMC

Rather than developing a new model checker in the course of my research, I instead continue

the development of ESBMC [70] which is based at the University of Southampton. ESBMC

is already a reasonably mature ANSI-C model checker, and none of the aims of my research

require an entirely new model checking technique, therefore a large amount of development can

be avoided.

In this section I examine the features that ESBMC possesses, the technique used to verify single

threaded programs, and its techniques for verifying concurrent software.
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FIGURE 2.6: ESBMC’s compilation procedure

2.4.1 Features

ESBMC is a fork of CBMC2, a bounded model checker with support for verification of in-

program assertions and language safety properties. Loop unroll lengths can be bounded, and the

problem is formatted into a SAT formula that can then be solved. Property violations result in a

satisfiable model in the SAT solver, which can be extracted and formatted into a program path

and set of variable assignments demonstrating a counterexample.

ESBMC was initially developed to extend CBMC to support producing an output formula in

SMT format [70], suitable to be solved by a SMT solver. This is a more expressive logic,

allowing all first order operations, with many theories covering bitvector arithmetic, integer

arithmetic, arrays and more.

Further effort has gone into allowing the verification of concurrent threads, modelled using the

pthread API for POSIX systems [68], with several techniques for exploring multithreaded

state space evaulated.

Future development of ESBMC includes implementing support for K-induction [126], and en-

hanced support for model checking C++ and its libraries [140].

2.4.2 Single threaded verification method

An overview of ESBMCs verification technique is presented in figures 2.6 and 2.7, and is similar

to CBMCs. The initial steps, shown in Figure 2.6, are to parse the C program to be tested

and instrument it. Parsing C necessitates a run of the C preprocessor, to include appropriate

headers and translate lexical #defines. This is performed by a built in copy of the Portable

C Compiler (PCC)’s preprocessor, which enables ESBMC to intercept the inclusion of certain

system headers and replace them with its own—necessary to ensure that architecture specific

features of the host machine are not compiled into the program under test. The preprocessed

output is then parsed into an abstract syntax tree in the usual manner, then translated into the
2Version 2.9
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FIGURE 2.7: ESBMC’s symbolic execution procedure

internal instruction representation: GOTO code. Models of library functions that have been

precompiled to GOTO are linked in before the GOTO code is interpreted.

The GOTO language is one of variable assignments, branches, and very little else. All alteration

of data is converted into an assignment statement, and all control flow facilities are flattened

into (possibly conditional) branches. A few higher constructs such as function calls are kept.

Expressions on the right hand side of an assignment are permitted to be any side-effect and

function call free C expression. This representation of the program separates two concerns: the

first being the exploration of the control flow graph, the second being the calculation of variable

values through the program.

The control flow of C functions is nontrivial to explore, as it contains numerous constructs for

loops and conditional execution, while also providing keywords such as continue, break

and goto to allow the programmer to break out of such constructs. To avoid having to interpret

these constructs during model checking (and the numerous ways in which they can be nested),

they are flattened to branches between basic blocks of code. This allows the exploration to

be very simple, following the path of branches, with the only complexity being the backwards

jumps that loops turn into (the exploration of which must be bounded) and conditional branches.

Once this GOTO code representation is built, a pointer analysis is applied to the program. A

fixedpoint is computed identifying the data objects that each pointer variable may point to, at

any time during execution. The resulting point-to set is then used to synthesise assertions about

the validity of pointer dereferences at runtime (i.e., that the pointer is within the bounds of each

object it may point to).
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Symbolic execution then proceeds to interpret each GOTO instruction, unrolling loops, and pro-

duce a program consisting of single static assignment (SSA) instructions. Such instructions

assign to each variable in the program once, and it remains immutable. This is illustrated in

Figure. 2.7—from some start state, we progressively take the current program state and the cur-

rent instruction, compute the local and global state changes it causes, and record those changes

while emitting an SSA instruction. The SSA program contains the logic of the program, while

the state tracking holds information needed to produce future SSA instructions. This includes

the set of variables a pointer currently points at, the function call stack and instruction pointer

of each thread, and the results of constant propagation of certain assignments.

The number of times a loop has been unrolled is tracked, as is the recursion depth (which is

also bounded). Joins in the control flow graph are represented as SSA phi instructions, where

the values of variables are assigned according to which control flow path was taken through the

program.

At the end of (bounded) execution, the SSA program contains assignments representing the

value of every variable in the program, at every point in time of the execution. To check for

property violations, ESBMC converts the SSA program to a quantifier free first order logic

representation: each variable becomes an SMT variable, and assignments are made by asserting

an equality between the variable and its formula. Two logics are supported: QF AUFLIRA,

a logic over integers, reals, arrays and uninterpreted functions; and QF AUFBV which works

over bitvectors, arrays and uninterpreted functions. The different logics have certain tradeoffs—

QF AUFLIRA tends to be faster, but cannot precisely replicate C semantics, such as integer

overflows and byte representations of all data objects. A more complete presentation of this

process is contained in Appendix C.

After the SMT formula is solved by a solver, either the satisfying assignment is used to print

a counterexample showing a property violation in the program, or if the formula unsatisfiable,

then there is no violation and ESBMC reports a successful verification.

2.4.3 Multithreaded verification technique

In contrast with other concurrent software model checkers, ESBMC uses a mixture of symbolic

and explicit state exploration to verify multithreaded software. Variables in the program under

test are encoded as described above, with a symbolic SSA program and SMT formula, however

the interleavings of threads are explored explicitly.

ESBMC implements this by creating a set of threads, executing each as a sequential program

with operations stored (as SSA assignments) to a global record, and context switching between

the set of active threads when access to a global variable is detected. There are three variants of

this technique, of which we only consider the lazy approach, as evaluation [68] has shown the

other two to be less efficient. For the lazy approach, ESBMC explores one interleaving of the
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program to completion, tests the SMT formula for satisfiabiliy, and if no property violation is

found then ESBMC backtracks along the path taken and explores a different interleaving.

Interleavings are explored by following the execution of one thread until it accesses state shared

between threads (such as global variables), executes a yield intrinsic, or creates / joins another

thread. At this point in exploration ESBMC stores the current state for backtracking, then ex-

plores the path taken if control were to context switch to any other thread in the program. Once

a path has been fully explored, and all possible context switches from the current state have been

explored, ESBMC backtracks to earlier states to explore other interleavings, or if there are no

further backtracking points reports a successful verification.

2.5 Summary

We have studied a series of approaches to performing software verification through model check-

ing, the method of specifying correctness properties of software, and how the resulting model

is checked for property violations. A number of modern model checkers are examined for their

suitability, and ESBMC is picked for development as it possesses the required features and has

the greatest amount of support available. Finally, we have looked in more detail at ESBMCs

verification approach, from a high level.



Chapter 3

Checking LTL properties against
bounded traces

Model checking has been used successfully to verify actual software (as opposed to abstract

system designs) [158, 34, 59, 22, 61], including multi-threaded applications written in low-level

languages such as ANSI-C [68, 139, 113]. This approach is typically used for the verification of

safety properties expressed as assertions in the code, but it can also be used to verify properties

such as the absence of global or local deadlock.

Many important requirements on the software behaviour can, however, be expressed more natu-

rally as liveness properties in a temporal logic, for example we may say about a battery charging

device “whenever the start button is pressed the charge eventually exceeds a minimum level”.

Such requirements are difficult to check directly as safety properties; it is typically necessary

to add additional executable code to the program under test to retain the past state information.

This amounts to the ad hoc introduction of a hand-coded state machine capturing (past-time)

temporal formulae.

In this chapter, we explore methods for checking properties expressed in future time linear tem-

poral logic (LTL), as defined in Section 2.3, against software written in the ANSI-C program-

ming language, using ESBMC. The work covered here has been published in several papers

[125, 128, 127], the presentation of which has been co-authored with my supervisors Denis

Nicole and Bernd Fischer, as well as my colleague Lucas Cordeiro. In particular, the presen-

tation in Section 3.2.1 was produced largely with the help Prof. Fischer, and the analysis of

Section 3.2.5 was done with a large contribution from Dr Nicole.

We use context-bounded model checking to validate single and multi-threaded C programs

against LTL formulae over expressions in the global variables of the C program under test.

Thus, if the C variables pressed, charge, and min represent the state of the button, and

the current and minimum charge levels respectively, then we can capture the requirement above

51
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with the LTL formula G({pressed} =⇒ F {charge>min}).1 We check these formulae

following the usual approach to LTL model checking [62, 93]; we convert the negated LTL

formula (the so-called never claim [92]) into a Büchi automaton (BA, Section 2.3.2), which is

composed with the program under test. If the composed system admits an accepting run, the

program violates the specified requirement.

Our approach differs from previous techniques in two key aspects. First, we check the actual C

program, rather than an extracted and abstracted model. We thus convert the LTL formula’s BA

further into a separate C monitor thread and check the interleavings between this monitor and

the program using ESBMC. We bound the execution of the monitor thread in such a way that it

still searches for accepting loops after the program has reached its own bound. We thus consider

the bounded program as the finite prefix of an infinite trace where state changes are limited to

this finite prefix; this gives us a method to uniformly check both safety and liveness within the

framework of bounded model checking.

Our approach avoids any imprecision due to translating the C program into a BA, but the monitor

has to capture transient behaviour internal to the program under test. The monitor and the

program communicate via auxiliary variables reporting the truth values of the LTL formula’s

embedded expressions. Our tool automatically inserts and maintains these on-the-fly and also

uses them to guide ESBMC’s thread exploration.

The work here describes the first mechanism, to the best of our knowledge, to verify LTL proper-

ties against an unmodified C code base, and against multithreaded programs that use the standard

pthread library [102]. It is also the first work to create a symbolic LTL model checker that does

not use binary decision diagrams (BDDs), through the use of ESBMC. Finally, we also extend

the truth domain of LTL properties to give more meaningful information about the liveness and

safety properties of potentially non-terminating programs.

Organisation In Section 3.1 we cover the work in [125], describing the conversion of LTL

formulae into a form that can be applied to an unmodified ANSI-C code base, and perform

some initial experiments with this process.

Section 3.2 addresses some of the performance concerns encountered in Section 3.1, and extends

the truth domain of the LTL formulae to provide more fine grained information about certain

properties. We apply the process to the same experiments and a case study.

Finally, in Section 3.3 we exercise the process described here with the 2012 RERS Grey-box

Challenge [96], a test suite of reachability and LTL properties, to demonstrate the effectiveness

of our approach.
1Here and throughout the chapter we enclose the embedded C expressions in curly brackets and typeset them in

fixed width font.
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3.1 Checking LTL properties against ANSI-C software

3.1.1 Linear-time Temporal logic

LTL is a commonly used specification logic in model checking [38, 97, 104], and was introduced

in Section 2.3. To express properties about the behaviour of software, rather than only logical

propositions, we allow propositions in the logic to be side-effect-free Boolean C expressions

over the global2 variables of the C program.

We interpret a possibly multi-threaded C program as a Kripke structure whose state transitions

are derived from the possibly interleaved execution sequence of C statements and whose val-

uations are the possible values of the program’s global variables. We use a separate run of

ESBMC to assure deadlock freedom. We finally describe the desired liveness property φ as an

LTL expression in the above syntax and then check that there are no possible infinite sequences

of program states for which ! φ holds.

Checking C software with LTL properties and a bounded model checker faces several problems,

foremost being that a bounded model checker evaluates only finite traces of the program under

test (whether single or multi-threaded), and LTL is defined over infinite traces. Below I outline

our solution to this problem, how C is interpreted as a trace, and how LTL can be evaluated over

such traces through the use of Büchi Automata (BA, see Section 2.3.2) and monitors.

3.1.1.1 Finite traces

The finite traces that ESBMC produces are created by bounding the number of times that loops

are unrolled. If the program contains at most one loop that has its unrolling bounded then

the finite traces are all prefixes of the potentially infinite traces of the original program. If the

program contains several such loops then we can still analyse it, using the --partial-loops

option. In this case, however, the observed finite traces are not necessarily proper prefixes of the

original program traces, and our approach can produce false results, as the symbolic execution

can continue past unsatisfied loop termination conditions.

To check LTL against these traces, we chose to extend the finite traces traces stutter extension

[93, pp. 130] or infinite extension [25]. To stutter extend, we take some finite trace of states ui

generated by ESBMC, take the final state of the trace ai ∈ Σ and repeat it infinitely as the trace

aω. We then append it to the finite trace, making the infinite trace uiaωi . In terms of the state

of the C program, this would mean that the final state of the program (i.e. the valuations of all

variables) is repeated forever after ESBMC’s exploration bound is reached.
2We consider all global variables to be volatile, in that they are never optimised out of the program, and their

modifications become visible immediately
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3.1.1.2 Trace semantics for ANSI-C

ESBMC compiles the C source of the program under test into a language of assignments and

guarded branches, as explained in Section 2.4.2. Each assignment creates a new valuation of

the variables in the program, corresponding to one state in the LTL trace. In Lamport’s [115]

definition of LTL, the variable valuations correspond to states and the assignments to actions.

These assignments, however, bear only a weak relation with the statements and sequence points

of the C language, as the order in which side-effects and expression evaluation occur is left

undefined by C. For this reason, we do not provide a definition for the LTL X operator, as the

next state in the LTL trace does not precisely correspond to any C language construct.

We follow Lamport’s [115] definition of LTL, and are only interested in temporal formulae

which are closed under stuttering. Our LTL expressions are thus insensitive to refinements of

the timestep to intervals less than those required to capture the ordering of changes in the global

state. The timesteps only need to be sufficiently fine to resolve any changes in the proposi-

tions that the LTL formulae are expressed over, so we only register a timestep when any global

variable that an LTL formula is expressed over is modified.

When applied to concurrent programs, for efficiency reasons we assume interleavings only at

statement boundaries and assume sequential consistency [114], but options to ESBMC allow

us also to use a finer-grained analysis to detect data races arising from interleavings within

statements.

3.1.1.3 Monitor threads

A monitor is some portion of code that inspects a program state and verifies that it satisfies a

given property, failing an assertion if this is not the case. A monitor thread is a monitor that

is interleaved with the execution of the program under test. This allows it to verify that the

property holds at each particular interleaving of the program, detecting any transient violations

between program interleavings.

Monitor threads have been employed in SPIN to verify LTL properties against the execution

of a program [93]. A non-deterministic BA representing the negation of the LTL property, the

so-called never claim, is implemented in a Promela process which will accept a program trace

that violates the original LTL property. SPIN then generates execution traces of interleavings

of the program being verified, and for each step in each trace runs the Promela BA. This is

called a synchronous interleaving. In our work we employ a similar mechanism to verify LTL

properties by interleaving the program under verification with a monitor thread as detailed in

the next section.

A number of algorithms exist for converting an LTL formula to a BA accepting a program trace

[82, 144, 90]. We use the ltl2ba [82] algorithm and tool, which produces smaller automata
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init !{pressed}||{charge > min}  

T0_2

true  {charge > min}  

true  

init true  

2

!{charge > min}&&{pressed}  

!{charge > min}  

FIGURE 3.1: The left BA accepts the example formula from the introduction, G({pressed}
-> F {charge > min}). The right BA is its negation, used for the never claim in our

monitor

than some other algorithms [144]. Figure 3.1 illustrates the BA produced from the LTL formula

in the introduction. Input symbols are propositions composed from the primitive C-expressions.

3.1.2 Checking LTL properties against a C program

As discussed in Section 3.1.1.3, an LTL property can be verified against a program by inter-

preting the corresponding BA over the program’s states along its execution path. We apply this

approach to a C code base by implementing the BA in C which is then executed as a monitor

thread, interleaved with the execution of the program. This involves three technical aspects: the

conversion of the BA to C, the interaction of the monitor thread with the program under test,

and the control of the interleavings.

The monitor thread itself is not interleaved with the program in a special manner as in SPIN,

but instead is treated as any other program thread. We use a counting mechanism to ensure that

the BA thread operates on the program states in the right sequential order. This approach can be

slower than a synchronous composition, but it requires no fundamental changes to the way that

ESBMC operates, as it uses only existing features.

3.1.2.1 Implementing a Büchi automata in C

We follow the SPIN approach of inverting the LTL formula being verified so that the BA accepts

execution traces which violate the original formula. We use a modified version of the ltl2ba

tool to convert its usual Promela output to C.

Listing A.1 presents the C implementation of the negated BA shown in Figure 3.1). It consists of

an infinite loop around a switch statement on a state variable, with the state variable valuations

corresponding to a state in the BA (see line 6). For each BA state, it atomically (lines 18, 46)

transitions to the next state of the BA. Non-deterministic behaviour is simulated by attempting

all transitions from a state non-deterministically (lines 24, 27, 36), after which guards on each

transition evaluate whether the transition can be taken (lines 25, 28, 37). These guards use
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ESBMC’s assume statements, which ensure that transitions not permitted by the current state of

the program under test are not explored.

This ensures that ESBMC’s symbolic execution of the original program drives the evolution of

the BA through the possible states. The code for the BA is not actually, but only symbolically,

executed, we do not have to model the non-determinism of the BA directly in the C code (e.g.,

by keeping a set of current states), and can instead represent the possible current states of the

BA as a non-deterministic but properly constrained single integer variable. That is, the C code

will transition only from one state to another, not from one set of states to another. We then rely

on the model checker to explore all possible transitions. This makes good use of the capabilities

of the SMT solver and substantially simplifies the implementation of the monitor.

To determine when the BA has accepted a program trace, we first await a time when the pro-

gram has terminated—given that we operate in the context of bounded model checking this is

guaranteed as any infinite loop is unrolled only to the length of the bound. Detection of thread

deadlock has already been performed by ESBMC. When the program has terminated, the BA

will have received each state of the program as input in the monitor thread. The BA loop is

run a second time with the final program state as input, recording the number of times it passes

through each state (lines 44-45). If a loop through an accepting state exists, it will be visited

more than once, triggering an assertion showing that the BA accepted the trace. This technique

places a constraint on the unwinding bound of the BA loop; it has to be sufficient for any such

loop to be detected. Manually setting this bound to twice the number of states in the BA permits

it to pass through every state twice on the largest possible loop.

This acceptance criteria operates on the principle that, should some program state need to be

reached for the LTL formula to hold or to fail, then it needs to have happened by the time

that the program bound has been reached. This can be an under-approximation as there can

be circumstances where a violating program state could be reached if the program bound were

higher.

We strictly control where interleavings may occur in the BA to ensure its soundness. The evalu-

ation of the next state is executed atomically, ensuring that the BA always has a consistent view

of program state. We also yield execution (line 17) before the BA inputs a program state so as to

force new interleavings to be explored. Certain utility functions are provided to allow a program

test harness to start the BA and check for acceptance at the end of execution (not shown).

3.1.2.2 Interacting with the existing code base

LTL formulae allow verification engineers to describe program behaviour using propositions

about program states. To describe the state of a C program, we support the use of C expressions

as propositions within LTL formulae. Any characters enclosed in curly brackets in the formula

are interpreted as a C expression and as a single proposition within LTL. The expression itself
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may use any global variables within the program under analysis as well as constants and side-

effect free operators. The expression must also evaluate to a value that can be interpreted as a

truth value under conventional C semantics.

For example, the following liveness property verifies that a certain input condition results in a

timer eventually increasing:

G(({press == 4} ∧ {mstate == 1}) =⇒ F{stime > refstime})

and the following safety property checks a buffer bound condition:

G({buffer size != 0} =⇒ {next < buffer size})

Within the BA (see Listing A.1 again) these C expressions are used to guard against invalid

transitions being explored. We avoid using the expressions directly in the BA; instead ESBMC

searches the program under verification for assignments to global variables used in the C ex-

pression, then inserts code to update an auxiliary Boolean variable corresponding to the truth of

the expression (lines 2 and 4) immediately after the global is changed. In case multiple propo-

sitions update on the same variable, re-evaluations are executed atomically. All modifications

are performed on ESBMC’s internal representation of the program and do not alter the original

code base.

This transformation does not, however, handle indirect assignments to variables, i.e., assign-

ments through dereferencing pointers. None of our test cases (see below) perform such actions—

in fact our application domain (embedded software) tends not to feature indirect operations at

all, instead preferring to operate on a fixed set of configuration and data variables, due to mem-

ory and environment limitations. As a result we have not attempted to extend our approach to

handle indirection. If required, it could be implemented through the use of a simple points-to

static analysis to identify which global variables pointers may point at, and updating the relevant

Boolean variables if a global is assigned through a pointer.

3.1.2.3 Synchronous Interleaving

A problem with operating the monitor thread containing the BA as a normal program thread

is that it is not always guaranteed to receive a complete sequence of valuations—that is, it is

entirely possible for the BA not to be scheduled to run after an event of interest, and thus not

perform a state transition it should have. This is clearly broken, as the BA may see a trace with

input characters artificially deleted. The full exploration of multithreaded state space guarantees

that we will explore interleavings where this occurs, as well as interleavings where the monitor

thread runs after every event of interest.

To address this, the BA discards interleavings where the propositions have changed more than

once but the BA has not had opportunity to run and interpret them (lines 19–21 in Listing A.1).
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We maintain a global variable (line 10) counting the number of times that the C expressions

forming propositions in the LTL formula have been re-evaluated, keep a corresponding counter

(line 9, 21) within the BA, and use an assume statement to restrict ourselves to traces where the

global counter has changed at most once since the last time the BA ran. This ensures that the

only interleavings considered are those where the BA runs every time the input symbol changes.

3.1.3 Experimental Evaluation

We have tested the work described here against a series of properties defining the behaviour of a

pulse oximeter firmware, which is a piece of sequential software that is responsible for measur-

ing the oxygen saturation (SpO2) and heart rate (HR) in the blood system using a non-invasive

method [67]. The firmware of the pulse oximeter device is composed of device drivers (i.e.,

display, keyboard, serial, sensor, and timer) that contain hardware-dependent code, a system log

component that allows the developer to debug the code through data stored on RAM memory,

and an API that enables the application layer to call the services provided by the platform. The

final version of the pulse oximeter firmware consists of approximately 3500 lines of ANSI-C

code and 80 functions.

The source code to the pulse oximiter is listed in Section A.2, with our test harnesses and any

modifications made documented in Section A.3.

To improve the performance of this verification approach, we implemented an optimisation tech-

nique called state hashing, details of which are covered in Section 5.2.

Here we report the results of verifying the pulse oximeter code against five liveness proper-

ties taken from an SMV model of the software [69], of the general form G(p -> F q) i.e.,

whenever an enabling condition p has become true, then eventually the property q is true. We

formulated a test harness for each portion of the firmware being tested to simulate the activity

that the LTL property checks. We then invoked ESBMC with a variety of loop unwind and

context switch bounds to determine the effectiveness of state hashing. We also ran these tests

against versions of the firmware deliberately altered not to satisfy the LTL formula, to verify

that failing execution traces are identified.

All tests were run on the Iridis 3 compute cluster3 with a memory limit of 4Gb and time limit

of 4 hours to execute. The results are summarized in Table 3.1. Here, the #L column contains

the line count of the source file for the portion of firmware being tested, P/F records whether the

test is expected to Pass or Fail, k the loop unwinding bound and C the context-bound specified

for the test.

We report the results for the original version of ESBMC 4 and the version with state hashing,

respectively. For each version, we report the verification time in seconds, the number #I and
31008 Intel Nehalem compute nodes, each with two 4-core processors, up to 45Gb of RAM, and InfiniBand

communications. Each test used only one core of one node.
4v1.16, available from www.esbmc.org
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Original run With state hashing
Name #L P/F k C Time #I / #FI Res Time #I / #FI Res

start
btn

856

Pass 1 20 207 7764/0 + 67 2245/0 +
Pass 1 40 199 7764/0 + 71 2245/0 +
Pass 2 20 2740 55203/0 + 479 11409/0 +
Pass 2 40 14400 0/0 TO 14400 0/0 TO
Fail 1 20 236 6719/231 + 81 1919/91 +
Fail 1 40 244 6719/231 + 94 1919/91 +
Fail 2 20 1344 29840/0 − 299 6911/0 −
Fail 2 40 N/A0 0/0 MO N/A 0/0 MO

up btn 856

Pass 1 20 78 3775/0 + 32 1385/0 +
Pass 1 40 83 3775/0 + 37 1385/0 +
Pass 2 20 2777 102566/0 + 898 41389/0 +
Pass 2 40 14400 0/0 TO 6012 111335/0 +
Fail 1 20 90 3775/0 − 35 1385/0 −
Fail 1 40 82 3775/0 − 33 1385/0 −
Fail 2 20 2743 102564/0 − 914 40938/0 −
Fail 2 40 14400 0/0 TO 4832 69275/3422 +

keyb
start

50

Pass 1 20 9668 92795/0 + 4385 49017/0 +
Pass 1 40 9767 92795/0 + 4489 49017/0 +
Pass 2 20 14400 0/0 TO 14400 0/0 TO
Pass 2 40 14400 0/0 TO 14400 0/0 TO
Fail 1 20 9795 92795/321 + 4836 49017/321 +
Fail 1 40 9924 92795/321 + 4914 49017/321 +
Fail 2 20 14400 0/0 TO 14400 0/0 TO
Fail 2 40 14400 0/0 TO 14400 0/0 TO

baud
conf

178

Pass 1 20 18 485/0 + 16 419/0 +
Pass 1 40 17 485/0 + 16 419/0 +
Pass 2 20 2440 39910/0 + 971 17500/0 +
Pass 2 40 2635 39910/0 + 1078 17500/0 +
Fail 1 20 18 485/56 + 17 419/56 +
Fail 1 40 18 485/56 + 16 419/56 +
Fail 2 20 2583 39910/2002 + 1010 17500/880 +
Fail 2 40 2851 39910/2002 + 1139 17500/880 +

serial
rx

584

Pass 1 20 334 5454/0 + 194 3108/0 +
Pass 1 40 324 5454/0 + 212 3108/0 +
Pass 2 20 10959 62332/0 + 4494 29257/0 +
Pass 2 40 14400 0/0 TO 70 627/0 +
Fail 1 20 215 3286/273 + 137 2030/257 +
Fail 1 40 211 3286/273 + 135 2030/257 +
Fail 2 20 3768 20917/0 − 1846 11388/0 −
Fail 2 40 14400 0/0 TO 14400 0/0 TO

TABLE 3.1: Results from testing LTL properties against pulse oximeter firmware. Time is
given in seconds

#FI of generated and failing interleavings, respectively, and the result. Here, “+” indicates that

ESBMC’s result is as expected (i.e. all its interleavings were verified successfully if the test is

expected to pass, and at least one interleaving is found to violate the LTL property if the test
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is expected to fail), while “−” indicates a false negative (i.e., ESBMC fails to find an existing

violation of the LTL property). TO indicates the check ran out of time and MO indicates it ran

out of memory.

We first observe that ESBMC is generally able to verify all positive test cases, although it tends

to time out with increasing bounds. The situation is less clear for the tests designed to fail. Here,

smaller unrolling and context switch bounds allow us to correctly identify failing interleavings,

but are sometimes not sufficient to expose the error (e.g., up btn), and small increases in the

unrolling bound generally require larger increases in the context bounds to expose the error,

leading to time-outs or memory-outs in most cases. The state hashing optimisation, however,

improves the situation, and allows us to find even deeply nested errors.

3.1.4 Analysis

Using context-bounded model checking to check LTL properties of ANSI-C software appears to

be an effective approach, finding the correct answers for each of the LTL formulae tested in the

experiments, for safety and liveness formula. In particular, the ability to test formulae against

the codebase without modification (save the necessary external test harness) makes verification

simple for the engineer. There are however, two significant limitations to the approach.

Firstly, the indiscriminate composition of the monitor thread with the program under test leads

to a very large number of interleavings that need to be explored. This necessitated the addition

of the aforementioned state hashing optimisation, which moderately reduced the state explo-

sion effect. It is particularly awkward for single threaded programs, which do not naturally

experience state explosion from concurrency, but still pay the performance penalty from being

composed with the monitor thread. Most problematic is that the majority of the interleavings

produced were rejected by the assumptions added in Section 3.1.2.3, where the monitor thread

is not scheduled sufficiently frequently. The reason behind selecting this method was simply to

avoid in-depth modifications of the model checker. It is clear, however, that further improve-

ments must be made for the sake of performance.

Secondly, the stutter extension discussed in Section 3.1.1 can make the checking of certain

formula meaningless. Consider a co-safety property (Section 2.3) and a piece of code being

checked that the property holds over, but only over particularly long traces, that would require a

large unwinding bound to reach. Such a co-safety would be reported as a verification failure by

our approach for any unwinding bound lower than the one required, as the formula would not

hold on the infinite stutter extension of a co-safety property that has not been fulfilled, despite

the fact that the formula eventually holds on the program. This result is at odds with the aims

of bounded model checking, to be sound but not complete, as the result reports an unsound

property violation. Safety properties that hold over the finite prefix will be reported as holding

over the whole execution of the program, despite future states possibly violating the property.
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P1:
1 int s=0;
2 while(true){
3 s=1-s;
4 };

P2:
1 int s=0;
2 while(true){
3 s=1;
4 s=0;
5 };

P3:
1 int s=0;
2 s=1;
3 while(true){
4 s=0;
5 s=1;
6 };

FIGURE 3.2: Programs with identical infinite traces but different behaviour on finite unwind-
ings for γ ≡ G({s=0} =⇒ F{s=1}).

Infinite stutter extension coupled with partial loop evaluation can also cause the validity of a

formula to be decided by the structure of the program under test rather than the program’s valid-

ity. Consider the code samples in Figure 3.2 and the liveness property γ ≡ G({s == 0} =⇒
F{s == 1},. The single infinite trace of states produced by each program is identical, alternat-

ing between the states {s==0} and {s==1}; γ holds over this trace. Were we to stutter extend

any of the finite prefixes of the trace, the trace would latch in one of those states forever, which

is to be expected. This would, however, make the truth of γ depend on what finite prefix we

select.

Intuitively, P3 will always be reported as a verification success, as any number of loop unwinding

bounds will end in a state where s==1, the stutter extension of which causes the corresponding

BA (refer back to Figure 3.1 on page 55) to either reject or loop infinitely in a non-accepting

state. The opposite will occur for P2 though, as it terminates in a state where s==0. P1 will be-

have erratically as the state it terminates in depends entirely on the number of loop unwindings

the program was permitted. This range of results that can be caused by the structure of the pro-

gram, in combination with stutter extension, significantly reduces confidence in this approach.

3.2 Improved LTL model checking of bounded traces

Given the drawbacks of our model checking approach highlighted in the previous section, we

studied several ways of improving the performance of our approach and the accuracy of the

violations that it reports. Our work here was originally presented in [128].

To address the performance issues associated with composing the program under test with a

monitor thread, we instead schedule the monitor thread using knowledge about the changes

to property variables, manually generating the synchronous interleaving referred to in Sec-

tion 3.1.2.3. This ensures that state explosion caused by concurrent threads is not amplified

by the monitor thread. The cost of evaluating the monitor’s BA is, however, still present in the

SMT formula solved at the end of each finite trace produced.

We also extend the truth values of the LTL expressions to a four-valued lattice describing the

least truth values over various possible future behaviours of a C program with possibly infinite
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state space. We consider the explored traces to be finite prefixes of infinite traces and our four-

valued logic describes the accepting behaviour of the BA for different infinite extensions of the

explored finite traces. In practice, the never claim BA obtained from commonly used specifica-

tions tends to have a small number of states. The small size allows us to analyse which states are

accepting under the different infinite extensions of the finite traces. We then check the combined

system several times, with different assertions corresponding to the different acceptance crite-

ria, to derive the correct truth value for the LTL formula. The program’s overall “correctness”

value in the lattice is the weakest truth value for which the model checker can find a witness that

violates the corresponding assertion. This gives us a method to analyse both safety and liveness

within the framework of bounded software model checking.

3.2.1 Multi-valued LTL

The principles of LTL formulae with extended values have already been explored elsewhere. We

follow the exposition by Bauer et al. [27] and use finite deMorgan lattices as truth domains. A

deMorgan lattice is a distributive lattice (L,t,u,>,⊥) where every element x ∈ L has a dual

element x ∈ L such that x = x and x v y implies y v x; here, v is the partial order induced

by the lattice structure. Note that not every deMorgan lattice is a Boolean lattice, because duals

are not proper complements (i.e., xux = ⊥ is not necessarily true), but the converse holds, and

in particular the Boolean lattice over the standard two-valued truth domain B2 = {⊥,>} is a

deMorgan lattice with ⊥ v >.

We can then define the standard semantics of LTL formulae via the interpretation function

[ |= ]ω : Σω × LTL → B2, as shown in Figure 3.3 [27]. We call the trace w ∈ Σω a model

of the LTL formula ϕ iff [w |= ϕ]ω = > and also say that w satisfies ϕ, or that ϕ holds for w.

For each LTL formula the set of all its models is an ω-regular language that is accepted by a

corresponding Büchi automaton [153, 154].

We interpret a possibly multi-threaded C program P as a Kripke structure in the manner given in

Section 3.1.1. P can be non-deterministic, so the transition relation can branch even for single-

threaded programs. As C’s semantics gives a defined (zero) value to all global variables not

initialised explicitly at their declaration, all valuations are completely defined in every state. We

identify a C program P with the set of all traces T (P ) that correspond to this Kripke structure,

and say that an LTL formula ϕ holds for P if ϕ holds for all w ∈ T (P ).

3.2.2 LTL over Finite Traces

Our aim here is to extend LTL to be well defined on finite traces, so that more information can be

gleaned about the way in which a formula holds on a system. The fundamental problem is that

the standard interpretation of X is a strong (or existential) next operator [107], which requires

the existence of a next state to hold. This is counter-intuitive for finite traces, since X true is
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Propositional constants.

[w |= true]ω => [w |= false]ω =⊥ [w |= p]ω =

{
> iff p ∈ w0

⊥ iff p 6∈ w0

Propositional operators.

[w |= ϕ ∨ ψ]ω = [w |= ϕ]ω t [w |= ψ]ω [w |= ¬ϕ]ω = [w |= ϕ]ω

Temporal operators.

[w |= Xϕ]ω = [w1 |= ϕ]ω

[w |= Fϕ]ω =

{
> iff [wi |= ϕ]ω = > for some i ≥ 0
⊥ otherwise

[w |= Gϕ]ω =

{
> iff [wi |= ϕ]ω = > for all i ≥ 0
⊥ otherwise

[w |= ϕUψ]ω =


> iff [wi |= ψ]ω = > for some i ≥ 0

and [wj |= ϕ]ω = > for all 0 ≤ j < i
⊥ otherwise

[w |= ϕRψ]ω =


> iff [wi |= ψ]ω = > for all i ≥ 0

or [wi |= ϕ]ω = > for some i ≥ 0
and [wj |= ψ]ω = > for all 0 ≤ j ≤ i

⊥ otherwise

FIGURE 3.3: Standard LTL semantics over infinite traces.

now no longer a tautology, as |=F (i.e., the standard interpretation applied to finite traces) gives

us, for all formulae ϕ, [u |= Xϕ]F = ⊥ if u1 = ε [27].

Several approaches tweak the syntax or semantics of LTL to remedy this situation. Since G

and F can be defined relatively straightforwardly on finite traces, Giannakopolou and Havelund

[83] suggested removing X and working with an X-free subset of LTL. The syntax can instead be

extended by adding an additional weak (or universal) next operator X [118], which complements

the strong next and holds if there is no next state: [u |= Xϕ]F = > if u1 = ε. Hence, X true

is a tautology. This also gives unwinding laws for F and G, namely Fϕ ≡ ϕ ∨ XFϕ and

Gϕ ≡ ϕ ∧ XGϕ. Alternatively, the distinction between strong and weak next can be encoded

into the semantics rather than the syntax, via two different semantic functions which coincide

on the temporal and most Boolean operators, but differ on negation (which flips between both

functions) and the atomic propositions, where they reflect the behaviours of strong and weak

next, respectively [78]. Bauer et al. conclude that these approaches are neither impartial nor

anticipatory—they can prematurely conclude that a formula holds, and may not conclude a

formula holds even when sufficient information is available [27].

The crux of the matter is that in a two-valued logic we cannot distinguish between a formula

that (truly) holds because we have seen a good prefix [112] and so all possible continuations of

the observed finite trace will be models as well, those that cannot hold because we have seen a
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bad prefix (i.e., a finite trace that cannot be the prefix of a model), and those that (presumably)

hold because we have not yet seen a bad prefix.

In order to realise this distinction, we use a larger truth domain. Bauer et al. [26, 27, 28] have

proposed and analysed two different domains, B3 = {⊥, ?,>}, with ⊥ v ? v >, ⊥ = >, and

? = ?, and B4 = {⊥,⊥p,>p,>}, with ⊥ v ⊥p v >p v >, ⊥ = >, and ⊥p = >p. Under

|=3, finite traces are mapped to > (resp. ⊥) iff they are good (resp. bad) prefixes; all other finite

traces are considered “ugly” and are mapped to the inconclusive truth value ? [26, 28]. In B4,

? is refined into the two truth values ⊥p (“presumably false”) and >p (“presumably true”). The

interpretation function |=4 then uses the finite trace semantics with weak next to distinguish

between the two cases (i.e., [u |= ϕ]4 = ⊥p iff u is an ugly prefix and [u |= ϕ]F = ⊥, and

similarly for >p) [27].

Our analysis here is based on B4 as well, but we use a different interpretation function from

Bauer et al. [27]. We use the infinite extension semantics discussed in the previous section to

resolve ugly prefixes into presumably good or presumably bad, whereas Bauer et al. classify

ugly prefixes using the weak-next operator. The advantage of our approach is that we can define

the finite trace semantics in terms of the standard semantics only.

Definition 3.1. The bounded trace semantics of LTL formulae is given by

[u |= ϕ]B =



> iff ∀w ∈ Σω · [uw |= ϕ]ω = >

>p iff [uuωn−1 |= ϕ]ω = > ∧ ∃w ∈ Σω · [uw |= ϕ]ω = ⊥

⊥p iff [uuωn−1 |= ϕ]ω = ⊥ ∧ ∃w ∈ Σω · [uw |= ϕ]ω = >

⊥ iff ∀w ∈ Σω · [uw |= ϕ]ω = ⊥

for a finite trace u ∈ Σ∗ of length n > 0 and an LTL formula ϕ.

In our case, all program traces are guaranteed to be non-empty, because all global variables have

defined initial values, which then form the initial state. We extend the interpretation to sets of

traces by taking the meet over all elements, i.e., [U |= ϕ]B =
d

u∈U [u |= ϕ]B . We say that ϕ

holds (resp. presumably holds) for a C program P if [T (P ) |= ϕ]B = > (resp. >p). We finally

say ϕ holds (resp. presumably holds) if [Σω |= ϕ]B = > (resp.>p) and define the notion of fails

resp. presumably failing correspondingly.

Considering again the example programs in Figure 3.2, checking the value of γ over P2 will

now result in ⊥p, indicating that a bad trace has not been seen but that the program terminates

in a state that fails when stutter extended, and P3 results in >p, indicating γ holds on the stut-

ter extension of the final state but a good prefix has not been seen. These results allow us to

identify whether the program terminates in a state that places an obligation on future states for

the formula to hold. Analysis of the possible values of various LTL formulae is discussed in

Section 3.2.5.
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3.2.3 LTL Model Checking vs. LTL Runtime Verification

Finite LTL semantics similar to the bounded trace semantics we are using here have been de-

veloped largely for run-time monitoring and verification purposes [116], and due to the focus

on finite traces, our approach has some similarities with run-time verification, but one key dif-

ference remains. Runtime verification only considers actual observed behaviours, one at a time,

while we analyse all possible behaviours in the same run. This difference becomes prominent

with non-determinism, even for single-threaded programs. Consider for example the program

Q

int p=0, q=0; p=1; if(*){p=0}; if(*){q=1};

where “*”denotes a non-deterministic choice and p and q are zero-initialised global variables. Q

can produce four distinct stutter-free finite traces, depending on the particular non-deterministic

choices. I present them here as sequences of states, separated by “,”:

(i) [{p==0}∧{q==0}, {p==1}∧{q==0}],

(ii) [{p==0}∧{q==0}, {p==1}∧{q==0}, {p==1}∧{q==1}],

(iii) [{p==0}∧{q==0}, {p==1}∧{q==0}, {p==0}∧{q==0}], and

(iv) [{p==0}∧{q==0}, {p==1}∧{q==0}, {p==0}∧{q==0}, {p==0}∧{q==1}].

Now consider the LTL formula ψ ≡ G({p==1} =⇒ {p==1}U {q==1}). Clearly, ψ does not

hold for the traces (iii) and (iv), and over these, |=3, |=4, and |=B all map ψ to ⊥. However, in

run-time verification, there is no guarantee that we ever observe these traces, so the assurance we

gain from its results is limited. Our approach, however, will work out that [T (Q) |= ψ]B = ⊥
and hence Q can fail ψ. Moreover, if we consider Q′ to be the variant of Q where q is initialised

with one, we find [T (Q′) |= ψ]B = > as well. Finally, if we change Q to Q′′

int p=0, q=0; p=1; if(*){q=1};

then (iii) and (iv) become impossible, and our approach will calculate [T (Q′′) |= ψ]B = ⊥p,

meaning that no finite trace produced by Q′′ is a definitive counter-example but, on stuttering,

ψ does not hold for all traces.

3.2.4 Characterising Program Behaviours Using B4

Definition 3.1 characterises the truth value in B4 of an LTL formula ϕ with respect to a single

finite trace u. In this section we now show how we can use the Büchi automaton for the never

claim to effectively calculate the truth value of the formula with respect to the finite traces of a
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program P . In Section 3.2.4.1, we identify characteristics of the BA that we can use to classify

input traces. In Section 3.2.4.2 we characterise the relationship between truth values in B4 and

validity of never claims over B2, while we describe the high-level structure of our algorithm in

Section 3.2.4.3.

3.2.4.1 Büchi Automata characteristics

Büchi automata (BA) were introduced in Section. 2.3.2. Here we chose to deal with BA’s that are

in reduced form [14], meaning they have no rejecting traps, i.e., there are no transitions to states

where no extension of the trace accepts. This reduction is conveniently already performed by

the ltl2ba [82] algorithm tool that we use to produce BA’s. An example of such a BA, in it’s

positive and negative forms, is in Figure 3.1, corresponding to the formula G({pressed} =⇒
F{charge > min}). The reduction can been seen in that, for the never-claim BA, the accepting

state (labelled “2”) has no available transition if charge > min is true. Without the reduction,

there would be a transition from “2” to a non-accepting state with a single self looping true

transition, representing a state that traps the BA to never accept.

We can apply a simple reachability static analysis to determine, for a given BA state and program

state, whether stutter extension of the program state would lead to an accepting loop through the

BA. Extending this, we can then determine whether there are any program states that can cause

the BA to reject once it has reached a particular state, and likewise whether there are any program

states that can lead to an accepting loop. This allows us to identify (for each BA state) whether

we have observed a good prefix where all future program states lead to the BA rejecting, or a

bad prefix where acceptance is inevitable.

Rather than using a complicated algorithm, we instead enumerate all BA states and all inputs

characters, and explore all further reachable states for each combination of the two. States

where no input leads to an accepting loop are identified as being part of a good prefix, while

states where all inputs lead to an unconditional accepting loop are identified as being part of

a bad prefix. States that meet neither of these criteria have their stutter acceptance analysed:

we explore the reachability of all states assuming one input is infinitely repeated, and evaluate

whether an accepting loop is reachable. The results of each of these tests are used to produce

the monitor code discussed in Section 3.2.6.

Our reachability analysis grows exponentially with both propositions and BA states, which lim-

its us to working only on small BAs.

3.2.4.2 Truth Values in B4 and Standard Validity of Never Claims

As noted above, Definition 3.1 characterises the truth value in B4 of an LTL formula ϕ with

respect to a single finite trace u. However, for model checking ϕ over a program P this is not

yet suitable. First, we need to express the truth value in B4 in terms of the validity of the never
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claim under the two-valued standard semantics. This allows us to use the BA for the never

claim directly, and avoids the need to define an explicit acceptance criterion for the four-valued

logics. The following lemma addresses this problem. Note that we do not need a complete

characterisation of all truth values in B4.

Lemma 3.2.

(i) [u |= ϕ]B = > iff @w ∈ Σω · [uw |= ¬ϕ]ω = >

(ii) [u |= ϕ]B w >p iff [uuωn−1 |= ¬ϕ]ω = ⊥

(iii) [u |= ϕ]B = ⊥ iff ∀w ∈ Σω · [uw |= ¬ϕ]ω = >

Proof. (i) Since the standard semantics |=ω (cf. Figure 3.3) is defined over B2, @w ∈ Σω ·
[uw |= ¬ϕ]ω = > is equivalent to ∀w ∈ Σω · [uw |= ¬ϕ]ω = ⊥, and thus to ∀w ∈ Σω ·
[uw |= ϕ]ω = >, which gives us the claim.

(ii) Similarly, [uuωn−1 |= ¬ϕ]ω = ⊥ is equivalent to [uuωn−1 |= ϕ]ω = >, which holds if and

only if [u |= ϕ]B = > or [u |= ϕ]B = >p.

(iii) This follows directly from the definitions of |=ω and |=B .

Second, the program P may be non-deterministic or multithreaded, and produce more than one

trace. We thus need to consider the minimum truth value attained over all of its possible traces

T (P ). The following lemma addresses this problem.

Lemma 3.3.

(i) [U |= ϕ]B = > iff @u ∈ U,w ∈ Σω · [uw |= ¬ϕ]ω = >

(ii) [U |= ϕ]B w >p iff @u ∈ U · [uuωn−1 |= ¬ϕ]ω = >

(iii) [U |= ϕ]B = ⊥ iff ∃u ∈ U · ∀w ∈ Σω · [uw |= ¬ϕ]ω = >

Proof. Recall that
d

u∈U [u |= ϕ]B = [U |= ϕ]B . Then:

(i) By Lemma 3.2 @u ∈ U,w ∈ Σω ·[uw |= ¬ϕ]ω = > is equivalent to ∀u ∈ U ·[u |= ϕ]B = >;

hence, [U |= ϕ]B = >.

(ii) By definition of |=ω, @u ∈ U ·[uuωn−1 |= ¬ϕ]ω = > is equivalent to ∀u ∈ U ·[uuωn−1 |= ϕ]ω =

>, which by definition of |=B means that ∀u ∈ U · [u |= ϕ]B w >p, and thus [U |= ϕ]B w >p.

(iii) By the definitions of |=ω and |=B we have that ∃u ∈ U · ∀w ∈ Σω · [uw |= ¬ϕ]ω = > is

equivalent to ∃u ∈ U · [u |= ϕ]B = ⊥ and thus [U |= ϕ]B = ⊥ as well.

3.2.4.3 Algorithm Structure

Lemma 3.3 rephrases the definition of validity in B4 into a form that is suitable for model

checking a program against a standard non-deterministic never claim BA. In particular, in all
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but the inner clause of the test for ⊥ the quantifiers are existential and are thus compatible with

the existential (i.e., optimistic) search for accepting traces.

In the following we use BA¬ϕ to denote the never claim BA for the LTL formula ϕ. We also

assume that BA¬ϕ is in reduced form [14]. These assumptions make the application of the tests

below straightforward.

[T (P ) |= ϕ]B = >: As BA¬ϕ is in reduced form, it cannot accept the program trace if it has

no transition from its set of current states to a next state, and the trace can be pruned. If

and only if all traces are pruned, the program evaluates to>. Note that this cannot happen

[14] if ϕ is a (non-trivial) classical safety property [13].

[T (P ) |= ϕ]B = ⊥: If BA¬ϕ reaches an accepting trap for any trace, ϕ evaluates to ⊥ over the

program, with the trace returned as a witness. Note that this cannot happen [14] if ϕ is a

classical liveness property [13].

[T (P ) |= ϕ]B = >p: If the property does not evaluate to > or ⊥, we check its stutter accep-

tance. The simple static analysis of the BA from Section. 3.2.4.1, given the transitions

enabled in the final program state, allows us to check for possible stutter acceptance at

the end of each symbolically generated set of traces. If no accepting cycle is found, the

property evaluates to >p, with one of the traces returned as a witness.

[T (P ) |= ϕ]B = ⊥p: If BA¬ϕ stutter accepts for at least one trace, the property evaluates to⊥p

and the trace is returned as witness.

Note that the different cases are not independent of each other, due to the inequality in Lemma 3.3 (ii).

As we are looking for a witness to the worst bounded behaviour that the program can exhibit

when we model check, we must check multiple cases, although in the implementation of the

algorithm (cf. Section 3.2.6) we check in a specific order to avoid redundant checks.

3.2.4.4 Example

As an example, consider the BA on the right of Figure 3.1, i.e., the never claim BA for the

formula G({pressed} =⇒ F{charge > min}). This BA is generated by ltl2ba and

is already optimised, and in reduced form. Hence, it can accept on some infinite suffix from

any state, and the set of optimistically accepting states is {init, 2}. There is no explicit trap

state and thus, as this is an optimised BA, the set of states which will accept for all infinite

suffixes is empty. The interesting behaviour of this request-response liveness condition is, as

explained further in Section 3.2.5.3, restricted to its behaviour on infinite stutter. There are

four possible infinite stutter suffixes and their accepting sets are shown in Table 3.2. Hence, if

{charge > min} and {pressed} are both false in the final program state, the BA stutter

accepts only if it is in state 2, and thus the trace is presumably failing only then.
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Final symbol Stutter-accepting states
¬{charge > min} ∧ ¬{pressed} {2}
¬{charge > min} ∧ {pressed} {init, 2}
{charge > min} ∧ ¬{pressed} ∅
{charge > min} ∧ {pressed} ∅

TABLE 3.2: Final symbol valuations and their corresponding stutter-accepting states.

3.2.5 Checking Safety, Co-Safety, and Liveness Properties

The previous section has described our process for evaluating whether LTL properties hold on

a software system, with the result a member of B4. While the members of B4 have an order of

“how correct” they are, a given property may only be able to evaluate to a subset of B4, regardless

of the traces observed in the system under test. This makes it difficult to have confidence that a

formula holds over a system as it might be unclear what responses to expect from ESBMC.

To address this, here we explore some of the different ways that LTL formulae can be classified,

and what results ESBMC can produce for that particular classification of formula. We use the

reachability static analysis of the never-claim BA and its knowledge of whether an accepting

state is reachable, to determine for any LTL expression, which of the four elements of B4 can be

returned, allowing us to estimate infinite or long-time program behaviours from the data returned

by ESBMC. We are, therefore, able to distinguish safety, co-safety, “true” liveness and “toggle”

liveness properties and thus to guide the expectations of the ESBMC user.

3.2.5.1 Safety Properties

In an imperative language such as C, it is common to test the validity of safety or invariant

properties at various points in the program execution via assert-statements. These may be

checked during program execution using the standard C library and, in conjunction with a suit-

able test suite, allow checking a variety of runs of the code as noted in Section 3.2.3. They are

also recognised and checked during symbolic execution by ESBMC which gives an exhaustive

examination of their validity for all (bounded) execution traces. Thus the code fragment on the

left of Figure 3.4 will be verified successfully as the loop invariant i+j==count holds when-

ever the assert-statement is executed. It is, however, often more convenient to verify that a

safety property holds everywhere except within a specific region in which updates are taking

place, rather than just at particular locations. This is particularly attractive in languages such as

C with limited support for data encapsulation: data that would be considered a private instance

field in an object-oriented language is modifiable in C by a library’s clients.

The classical safety property Gϕ states that ϕ must hold throughout program execution. How-

ever, this is of little practical use as it stands, because ϕwill typically be violated by any changes

to its individual variables. Instead we model the permitted region in which the individual vari-

ables can be updated using a global flag looking which we set to zero during an update, and
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1 const int count=6;
2 int i=count;
3 int j=0;
4
5
6 ...
7 while(i) {
8 i--;
9 j++;

10 assert(i+j==count);
11 }

1 const int count=6;
2 int i=count;
3 int j=0;
4 int looking=1;
5 /* visibility to monitor */
6 ...
7 while(i) {
8 looking=0;
9 i--;

10 j++;
11 looking=1;
12 }

FIGURE 3.4: C program with a safety assertion (left) and a monitor variable for a guarded
safety property (right).

use a guarded safety property G({looking} =⇒ {i+j==count}). The listing on the right

of Figure 3.4 shows the modified fragment together with the auxiliary code. In this case, the

symbolic execution runs to completion and ESBMC reports >p.

Since it is in principle always possible for a safety property to be violated at some future time,

no finite execution will cause the never claim BA to reject a word outright. Thus we can expect

⊥ if the property is ever violated, and>p if it holds for the trace prefix we have examined. If the

program terminates, however, then we know no future violation can occur, and the the property

holds. Our approach will stutter-extend the final state of the program and report >p, requiring

us to verify that the program terminates by some other means, for example through the use of

unwinding assertions (Section 2.4.2).

We can instead modify our LTL specification to capture explicitly the termination of the pro-

gram; this is a natural use for the U operator. We simply add a second auxiliary variable done

to capture program termination; this is initialised to zero, and set to one immediately before the

program finishes. We then use the LTL specification ({looking} =⇒ {i+j==count})U{done}.
In this case, ESBMC reports a successful verification (i.e., >) because the never claim BA fails;

the invariant holds until done becomes true.

Note that, while accurately expressing a safety property over a terminating program, the second

LTL expression does not meet the classical definition of a safety property [13] as finite prefixes

can guarantee rejection of the never claim.

3.2.5.2 Co-Safety Properties

Co-safety properties [28] often reflect convergence or termination conditions. They are the con-

verse of safety properties; they can be demonstrated to be true by some finite trace. Technically,

they are a subset of liveness properties [13] as, whatever the initial trace, there is some future

extension that can satisfy them. A co-safety property can never evaluate to ⊥ in B4.
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If we work again from the example shown in Figure 3.4, then the LTL formula F{j==6} ex-

presses the termination (co-safety) condition that j will eventually reach its final value. When

the program runs to completion, the condition is satisfied and ESBMC reports successful verifi-

cation (i.e., >). If we artificially restrict the number of loop interactions by setting the ESBMC

flag5 --unwindset 1:4 to restrict the program loop to four iterations, ESBMC reports “pre-

sumably bad” (i.e.,⊥p). This is typical of a co-safety property; a gradually extended partial trace

will continuously report “presumably bad” (as the necessary event has not happened) until it re-

ports successful verification.

3.2.5.3 True Liveness Properties

Safety and co-safety properties have natural definitions over both finite and infinite traces, i.e.,

for terminating and for non-terminating programs. In contrast, true liveness properties6 are

generally regarded as well-defined only over infinite words. It is thus a challenge to use a

bounded model checker to explore the true liveness properties of a program.

One of the simplest true liveness properties is a request-response formula of the form G(ϕ =⇒
Fψ). The program is always required to respond to the request ϕ by producing a response ψ.

We may examine this behaviour with the simple program

unsigned int i=0; int main() { while(1) i++; };

and the property G({i%2==0} =⇒ F{i%3==0}). This property has the typical feature of

a true liveness property: no finite trace can determine acceptance or rejection. A simple static

analysis which searches for rejecting and accepting traps in the never claim BA already shows

that this formula will (regardless of the program) never result in a definitive outcome (i.e., ⊥ or

>).

In general, the regular appearance of>p as we extend the length of the investigated prefix trace is

characteristic of good programs under a request-response liveness property, while bad programs

will eventually stop yielding in>p. This comes from the fact that a good program will regularly

satisfy the response condition and evaluate to >p at that point, while a bad program will never

satisfy the response condition and will always respond ⊥p once the request condition becomes

true. For this example program, as we progressively increase the unwind bound from 1 to 12,

the program’s behaviour oscillates between >p and ⊥p, and ESBMC reports:

>p,⊥p,>p,⊥p,⊥p,>p,>p,⊥p,>p,⊥p,⊥p,>p

In this particular case, we only have to bound a single loop in the program, making the trace seen

a finite prefix of the programs infinite trace, with the size of the trace increasing as we increase
5In this context, the “1” identifies a specific loop, in this case the main program loop, and the “4” gives a specific

bound to apply to that loop
6 The classical definition of liveness properties [13] includes co-safety properties as well. Here we use the term

true liveness property to exclude co-safety properties.
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the unwind bound. More general programs can be more difficult to examine; if, for example,

we have to bound several loops, the finite traces we observe may not even be valid prefixes of

the real program behaviour. Nevertheless, in well-designed programs, we might hope that loop

iterations would independently meet request-response liveness conditions and, as we increase

the unwind bounds on the various loops we would expect to see regular appearances of >p.

A variant of the request-response liveness formula is often used as a fairness formula. The

formula GF{p} expresses that the C expression p is true infinitely often at all times in the future.

Such conditions can, for example, be conjoined into expressions of the form (
∧

i GF ρi) =⇒
G(ϕ =⇒ Fψ) which are easily handled by our tools. Note that such expressions were the

original motivation for the development of the compact BAs produced by ltl2ba [82].

Some liveness properties are resistant to an analysis with finite traces. “Toggle” properties such

as G((ϕ =⇒ F¬ϕ) ∧ (¬ϕ =⇒ Fϕ)) can be seen from our static analysis to have no

stutter-accepting prefixes. The static analysis of the never claim BA for this formula shows that

it responds with ⊥p to all (non-empty) finite traces. Unfortunately, our tools are of little further

use in this case, other than to confirm the impossibility of the task set in front of them. Thus,

checking the formula

G(({i%2} =⇒ F¬{i%2}) ∧ (¬{i%2} =⇒ F{i%2}))

over the above program, as we progressively unwind we see

⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p, . . .

3.2.5.4 Restricted Alphabets

Some symbols of the alphabet Σ = 2Prop cannot arise during program execution; this can

happen if the various propositions are not independent. As an obvious example, consider a

formula which includes both {p} and {!p} as primitive C expressions rather than negating in

the LTL using {p} and ¬{p}. This causes no problems with the evolution of the BA during

program execution, nor with the computation of stutter-acceptance or rejection for ⊥p or >p.

Our system will, however, explore too large a symbol space when analysing for acceptance

over all, or over no, future continuations. We might, in such situations, report ⊥p where a

more sensitive analysis would report ⊥. ESBMC can itself be used, if necessary, to confirm the

independence of the C expressions.

3.2.6 Implementation

Our implementation of the monitor thread broadly follows our previous approach, as described

in Section 3.1.2.1, where the never claim is produced as a BA, and its structure replicated in a
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C finite state machine, with nondeterministically taken transitions guarded with assume state-

ments. Listing A.2 shows the C implementation of a monitor, with the never claim BA in

Figure 3.1 (see page 55) contained in the function ltl2ba fsm (lines 9 to 39). We require that

the test harness under which the simulation is run calls ltl2ba start monitor when the

simulation starts, and ltl2ba finish monitor when it ends.

There are a number of differences between our new approach and the old, the two most important

being that the interleaving of the monitor thread with the program under test is explicitly encoded

(see below), and the result of the BA applied to the trace is evaluated using the results of the

static reachability analysis, rather than by only stutter extending the final state of the program

under test.

Use of static analysis The output of the static analysis as described in Section 3.2.4.1 is en-

coded in the 3 arrays on lines 50, 54, and 57 of Listing A.2. Each state in the BA is numbered,

as well as each input letter to the BA. The first array records whether a given state and input

letter leads to an accepting infinite trace if stutter extended, while the other two arrays record

whether a given state is only ever part of a good prefix, and whether a state can only be part of

a bad prefix.

ESBMC can only report successful and unsuccessful verifications, and so we report the value

in B4 of traces through in-program assertions. The ltl2ba finish monitor function per-

forms this on line 67. Here, there are three assertions, corresponding to the >p, ⊥p, and ⊥
results, which are violated when they identify one of those traces. ⊥ is identified by the final

state being one that can only be part of a bad trace; ⊥p is identified by being in a state that

accepts upon stutter extension; and >p by the discovery of a trace that the BA does not reject.

> is reported when the BA rejects for all traces7 by ESBMC reporting a successful verification,

or the BA terminates in a state that must be part of a good prefix.

As mentioned in Section 3.2.4.3, these conditions are not independent and so we check them in

order, to find the least value of all traces through the program under test. As a result, our test

harnesses run each benchmark 3 times, checking for only one response each time, in the order

⊥ ⊥p >p. The first of these values to be reported as a trace in the program under test is the least

value, while if all three are not present then we conclude that the response is >.

Synchronous Interleaving One of the flaws with our previous work was the composition

of the monitor thread with the program under analysis in the same manner as we would any

other thread, leading to unnecessary state explosion. We have therefore changed our approach

to perform a deterministic and directed interleaving of the monitor with the program under

analysis. Code inserted after global variable updates now calls a model checker intrinsic that

causes it to context switch to the monitor thread, then context switch back once the monitor has
7No further transitions being feasible causes the transition assume statements to all evaluate to false, preventing

any assertion from being satisfiable
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run the BA a single step; the monitor itself no longer behaves as a schedulable thread. This

technique effectively inlines the running of the BA at every point of interest. It also ensures that

verification of single-threaded programs does not suffer from a multi-threaded state explosion.

3.2.7 Case Studies

We have tested the approach described in this paper against a set of behavioural properties of

the pulse oximeter firmware (as introduced in the evaluation of our previous work, see Sec-

tion 3.1.3), and a bicycle monitoring computer, a multi-threaded model of a data collection

computer for cyclists. All tests were run on an otherwise idle Linux workstation 8 using ES-

BMC version 1.209 and Microsoft Z3 version 2.19, with a time limit of one hour to execute.

3.2.7.1 Pulse Oximeter

Here we report the results of verifying the pulse oximeter code against six properties selected

from the SMV model of the software [69], as shown in Table 3.3. Note that all six properties

hold for the code.

The source code to the pulse oximiter is listed in Section A.2, with our test harnesses and any

modifications made documented in Section A.3.

Name Property
baud conf G({brate == 1200} =⇒ F{TH1 == 0xE8})
keyb start G({the key == 1} =⇒ F{command == 1})
serial rx G(({p inDat == 1} ∨ {flag2 == 1}) =⇒ F{flag1 == 1})
up btn G(({press == 4} ∧ {mstate == 1}) =⇒ F{stime > refstime})
start btn G((¬{press == 1} ∧ F{press == 1}) =⇒ F{q startCall})
buflim G({buffer size != 0} =⇒ {next < buffer size})

TABLE 3.3: Properties for verification of pulse oximeter firmware.

The first four properties are liveness properties of the general form G(ϕ =⇒ Fψ), so that

whenever an enabling condition ϕ has become true, then eventually the property ψ is required to

become true as well. These are some of the same properties verified in our previous experiments.

The up btn formula checks that when the up button is pressed (press == 4) and the device

is in a particular state (mstate == 1), then eventually an internal counter stime becomes

larger than its previous value (kept in the variable refstime inside the test harness). The

formula start btn checks that whenever there is a transition of press to one from any other

value then q startCall will also become true now or in the future. Note however that we

are not checking for a strict correspondence between changes in press and the occurrences of

q startCall becoming true so that for example the former can happen several times before
82.67Ghz Intel Xeon, 12Gb of memory, running Fedora 16
9Available from www.esbmc.org
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original modified
Property loc k t (sec.) Result t (sec.) Result

baud conf 178

1 1 >p 1 ⊥p

4 1 >p 1 ⊥p

10 1 >p 1 ⊥p

20 2 >p 2 ⊥p

keyb start 50

1 1 >p 1 ⊥p

4 2 >p 2 ⊥p

10 5 >p 4 ⊥p

20 17 >p 15 ⊥p

serial rx 584

1 1 >p 1 ⊥p

4 2 >p 2 ⊥p

10 7 >p 5 ⊥p

20 23 >p 25 ⊥p

up btn 856

1 1 >p 1 >p

4 1 >p 1 >p

10 2 >p 2 >p

20 3 >p 3 ⊥p

start btn 856

1 1 >p 1 ⊥p

4 1 >p 1 ⊥p

10 2 >p 2 ⊥p

20 3 >p 2 ⊥p

buflim 145

1 1 >p 1 ⊥
4 934 >p 4 ⊥

10 MO MO MO MO
20 MO MO MO MO

TABLE 3.4: Results of testing LTL properties against pulse oximeter firmware.

the latter happens. Finally buflim is a safety property that ensures that a ring-buffer output index

does not exceed the allowed limits. This check is similar to the buffer overflow checks already

supported by ESBMC.

As before, we formulated test harnesses for each piece of code, and tested our approach with the

original source code, and a version altered to be incorrect. The results are summarised in Table

3.4. Here, the loc column contains the line count of the source file for the portion of firmware

being tested and k the loop unwinding bound specified for the test. The columns t and Result

record the elapsed time in seconds that the test took to run and the outcome ESBMC reported

for the test. A result of “TO” indicates the test did not complete in the allowed time, and “MO”

indicates that ESBMC exhausted the available memory.

We first observe that ESBMC determines the expected result for most test cases. Since the

first five properties are liveness properties, ESBMC reports the inconclusive results >p and ⊥p

instead of the definitive values. We also observe that the amount of time taken scales roughly

linearly with the unwind bound given in most tests. A notable exception is the buflim test, which

increases dramatically in time and memory requirements. This performance hit is caused by a
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large amount of program non-determinism in the portion of code being LTL checked, making

the checking of higher unwind bounds unfeasible.

Finally, we observe that the up btn property has incorrect results for a number of cases. Here,

the seeded error combines a number of (in this case, three) consecutive keypresses into one

keypress event. This violates the property that the internal counter stime always increases

after the enabling key press event. However, as every third keypress does result in a keypress

event, the unwind bounds of 1, 4 and 10 terminate with the most recent keypress having caused

a keypress event, thus terminating in a >p state. This is an example of a property that oscillates

between ⊥p and >p as the unwind bounds are changed, as discussed in Section 3.2.5.3.

3.2.7.2 Bicycle computer

The bicycle computer case study comprises a small C-model of a device designed to gather

and display speed and distance information about a cyclist’s journey. This case study contains

approximately 150 lines of code. The program is multi-threaded and treats user input, display,

and data collection as separate processes. We test a number of (valid) properties over the global

state of the program, listed in Table 3.5. The source code to the bicycle computer is listed in

Section A.4.

Name Property
dist ovfl G({cycle distance m >= 0})
tot dist ovfl G({total cycle distance m >= 0})
dist rel G({cycle distance m <= total cycle distance m})
state range G({cur state >= 0} ∧ {cur state <= 3})

TABLE 3.5: Bicycle computer properties.

k = 1 k = 2

Property C Time (s) Result Time (s) Result

dist ovfl
1 1 >p 1 >p

2 7 >p 34 >p

3 56 >p 379 >p

tot dist ovfl
1 1 >p 1 >p

2 5 >p 24 >p

3 63 >p 368 >p

dist rel
1 1 >p 2 >p

2 7 >p 32 >p

3 59 >p 542 >p

state range
1 1 >p 2 >p

2 7 >p 42 >p

3 62 >p 478 >p

TABLE 3.6: Results of testing LTL properties against bicycle model.
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Because this program is multi-threaded, checking it using ESBMC results in a large number

of distinct runs of ESBMC’s SMT solver, each corresponding to different thread interleavings.

These have to be combined together to report the worst (in the four-valued lattice) behaviour of

any interleaving.

We test the program against the properties with a number of different unwind bounds k and

context switch bounds C. Our results (cf. Table 3.6) show the correct output is determined for

each run, for a variety of loop unwind bounds and context switch bounds. We note that verifi-

cation time increases exponentially with increases in the context bound, which is as expected in

multi-threaded verification.

The bicycle computer examples above are all safety properties. Verification of liveness prop-

erties in multi-threaded code presents additional difficulties for our approach and is currently

practical only for small examples. Multi-threaded safety failures are typically shallow, requir-

ing only few interleaves. In contrast, even liveness properties guaranteed by loop invariants

require that relatively large interleave bounds be set to ensure that all threads run complete loop

iterations. More general liveness properties can depend on scheduling between threads. The de-

fault pthread behaviour provides weak fairness and is accurately modelled by ESBMC. Liveness

properties which depend on having fairness will, however, inevitably show violations for finite

traces, as ESBMC will produce a thread schedule where the unwinding bound of a thread that

makes a response to a request is exhausted prior to a request being made.

3.2.8 Analysis

The most obvious difference from our previous work is that the amount of time required to

evaluate a formula over the system under test is vastly reduced, for the pulse oximeter down from

an average of thousands of seconds in Table 3.1, to tens in Table 3.4. As a result, the unwinding

bound that we are feasibly able to reach is greatly extended, from one or two up to twenty.

This improvement is entirely due to the change from using multithreaded exploration to find

the synchronous interleaving, to explicitly exploring it. (It also eliminates for single threaded

programs the relevance of the context switch bound, which is not displayed in Table 3.4).

We also receive more meaningful responses from the verification process, with the liveness

properties evaluating to >p and ⊥p rather than delivering a definitive result, and the safety

properties reporting >p and ⊥ for successful and failing verifications. We are also able to use

the BA static analysis on the formulae we verify to determine what results to expect—as a result,

we know that no formula is a co-safety property and thus none can yield a > response, and so

we are not surprised that it is not reported in any of our tests.

We show that our approach applies correctly to multithreaded programs as well as single threaded,

with the caveat that weak fairness of thread interleavings interferes with the evaluation of live-

ness properties.
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3.3 RERS Greybox challenge

In order to evaluate our approach against a larger set of benchmarks, and to compare it against

other methods of verify LTL properties, we entered ESBMC into the 2012 RERS Greybox Chal-

lenge [149], a competition to verify LTL and reachability properties across a suite of synthesised

benchmarks classified as “reactive systems”.

In this section, we introduce the benchmarks that make up the RERS challenge, the properties,

our approach to verifying them, and our results. We then compare the performance of our

approach against other tools submitted to the challenge. The work here was originally published

in [127].

3.3.1 Introduction

The premise for the RERS challenge is that there are insufficient test suites available for uni-

formly evaluating software verification tools—industrial samples tend to have many environ-

mental dependencies, and focus on very specific scenarios [149]. They also do not allow for

verifiers with differing input languages to be directly compared. To address this, the organisers

developed a method of generalising forms of behavioural properties (expressed in LTL), com-

bine a set of them into an abstract state machine, then synthesising benchmarks representing

those state machines into several different languages for verification by different tools.

Prior to the conference, the organisers published these synthesised benchmarks and sets of prop-

erties for each, and set the task of analysing the benchmarks to determine which of the properties

hold over the systems. The correct results were not published in advance, and the competitors

submitted their results before the reference answers were released. The term “greybox” refers to

the nature of the testing being performed: the competitors can study the structure of the system

under test directly so it is not a “blackbox” test, but there is no meaning associated with the

synthesised test’s actions, preventing it from being a “whitebox” test.

The properties came in two flavours: firstly, the LTL properties were a mixture of safety, co-

safety and liveness properties. Secondly, reachability properties were present, however they are

not within the scope of this chapter and will be ignored for the remainder (see the publication

[127] for more information).

As well as the pre-published benchmarks, the organisers also published another set of bench-

marks during the conference at which competitors results were discussed, with the intention

that they be analysed during the course of the conference. This was referred to as the “online”

challenge, the other benchmarks “offline”; we did not participate in the online challenge.



Chapter 3 Checking LTL properties against bounded traces 79

3.3.2 Challenge problems

Briefly, the test suite of benchmarks were generated thus: a set of LTL formulae were gener-

ated from several formula templates, expressed over abstract states. These formulae were each

converted into Büchi automata, which were then combined into a single Mealy state machine.

The transformation process ensured that all the traces accepted by the BA are also accepted by

the Mealy machine. This machine was then synthesised into software implementations in Java

and C. In these implementations the machine states are not given explicitly, but only implicitly

by the possible values of a number of state variables. The implementations consist of a main

loop which in each iteration reads an input (i.e., event) from the standard input, updates the state

variables, and possibly writes an output (i.e., action) to the standard output; the latter two are

guarded by conditionals over the input, and over the values of the state variables.

The offline challenge consisted of nine benchmarks (labelled Program1 to Program9), each

with 100 LTL formula to be checked, and were classified on two dimensions of size and complex-

ity: for size, benchmarks were labelled one of “small”, “medium”, or “large”, and for complexity

the labels were “easy”, “moderate” and “hard”. “Larger” benchmarks had more state transitions

within them than the smaller ones. The exact meaning of the differing levels of complexity was

unclear, although all three hard problems had substantially more state variables.

The challenge problems all work with relatively small alphabets, and use five or (in most cases)

six different input symbols, and between three and nine different output symbols. Easy and

moderate problems have between four and eight state variables, while large problems have thirty.

The programs for the offline problems only assign up to five different integer constants to the

state variables, and only use the equality and propositional operators in the guards.

3.3.3 Execution of Experiments

We participated only in the offline phase of the Challenge, and attempted only the small and

medium problems (i.e., Problem1 to Problem6), of which we only obtained results for LTL

properties from the first four. The large problems (Problem7 to Problem9) were too large

for ESBMC’s analysis, and lead to memory exhaustion during parsing. We ran ESBMC on the

C versions of the Challenge programs, with some minor modifications: replacing input from

scanf by an appropriately constrained non-deterministic choice, and to pruning (by means of

an assumption on the computed output) executions that use invalid inputs. The input and output

values were also promoted to global variables so that we could make expressions in the LTL

formula about their values.

We ran all the experiments on the Southampton IRIDIS compute cluster,which comprises about

1000 nodes, each with 12 2.4Ghz Intel Westmere cores and 22Gb of memory, running Red Hat

Enterprise Linux Server release 5.3 (Tikanga). We submitted batches of 60 jobs, which where

scheduled by IRIDIS’ own job scheduling system. We set no time or memory limits for the jobs
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corresponding to the reachability properties, and a time limit of one hour (but no memory limit)

for the jobs corresponding to the behavioural properties. Each property was checked with an

increasing number of unwinding bounds, initially from five to twenty; the harder tests, however,

mostly became unfeasible to verify after fifteen unwinds. The exact responses received for each

unwinding are in Table 3.8.

We did achieve some responses for Problem5, however all of the reachability properties that

we checked at the same time evaluated as unreachable, which seemed suspicious. As a re-

sult we reasoned that some bug within ESBMC was making some paths unfeasible, and chose

not to submit results for Problem5.10 We managed to verify some reachability properties in

Problem6 at high unwind bounds, but not the LTL properties, and chose not to report the LTL

properties for that problem.

3.3.4 Approach

The LTL formula given by the organisers required a small amount of transformation before being

suitable for our approach: a weak-until operator was replaced with Gφ
∨
φUψ, and propositions

about the input letter to the state machine were replaced with C expressions inspecting program

input variables. The approach we have developed (as described above) then applies cleanly, and

we produce BAs and monitors as explained in Section 3.2.

For verifying the LTL properties, we also ignored certain illegal paths through the benchmarks

(signified by assertion failures) by transforming calls to the assert function to assume. This

had the effect of pruning all illegal paths from being were explored by the model checker.

It is important to note at this point that the only actions taken to make our LTL verification ap-

proach apply to these benchmarks were to expand the weak-until operator, and to make the input

and output values global variables. The other changes were to correctly model the nondetermin-

istic behaviour of the benchmarks within our model checker, which was also required to verify

the RERS reachability properties. The weak-until operator is not part of the usual LTL definition

and so we are justified in having to transform it; the limitations of requiring expressions over

global variables are discussed in Section 3.4.1.

For the competition itself, competitors were invited to identify each LTL property for each

benchmark as either holding or having a violation, and also to assign a confidence to each

individual result on a scale of one to nine. A score was the computed, with the weight of the

confidence accumulated if the property was correctly classified, or doubled and subtracted if

it was not. We assigned a confidence of nine to > and ⊥ responses, as in our approach these

definitively identify properties holding and being violated. Our choice of confidence for >p and

⊥p responses was guided by the stability of the response as we increased the unwinding bound,

as discussed in Section 3.3.6
10A decision vindicated as a later version of ESBMC, 1.23, is able to identify reachable properties in Problem5.
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init !{output == 21}

all

!{output != 26}

true

FIGURE 3.5: The BA generated for the never claim of the property output U occurs before
output Z.

3.3.5 An example

We take as an example the LTL formula for the first behavioural property for the small/easy

case, i.e., the output U occurs before output Z:

(! oZ WU (oU & ! oZ))

After translation into our input format, the never claim becomes

!(({output != 26} U ({output == 21} && {output != 26}))

|| (G {output != 26}))

The BA for this formula is shown in Fig. 3.5. This particular LTL formula does not fall into any

of the three simple types of property, safety, co-safety, or liveness. A finite prefix11 can be good

(e.g. 〈oV, oV, oU〉, where the BA fails) or bad (e.g. 〈oV, oV, oZ〉, where the BA is guaranteed to

be able to remain in an accepting loop). It can also be succeeding (e.g. 〈oV, oV, oV, oV〉, where

both success and failure remain possible but an infinite stutter extension would be good). This

particular BA cannot, however, show failing behaviour.

3.3.6 Analysis results

We were only able to achieve useful unwind bounds on the three small problems and the medi-

um/easy problem (i.e., Problem1 to Problem4). Table 3.8 summarises the results. For all

small problems, all outcomes are the same for unwind bounds 9–14. We thus have reasonable

confidence in our results for the small problems.

For the medium/easy problem there are a few properties (#0, #14, #17, #77, #98) where the

outcome changes with increasing unwind bounds. However, in all cases the change is from

⊥p to >, corresponding to finally reaching the co-safety witness with the next iteration of the

program’s loop.
11Since this specific LTL formula only uses output the traces (and thus prefixes) consist of output-literals

only. However, the corresponding input values can still be extracted from the BMC counterexamples.



82 Chapter 3 Checking LTL properties against bounded traces

Overall, the definitive (i.e., good and bad) and inconclusive (i.e., succeeding and failing) out-

comes are roughly equally common. However, we find substantially more decisive results (200

instances of ⊥) than probable results (12 instances of ⊥p)

We used a validation program (Problem10.c) to validate our analysis results—this problem

was provided with reference correct answers to allow competitors to check their approaches. For

the 100 given LTL properties, our approach produced, with the scheme outlined above, only two

false results (for #13 and #30). In both cases, we claim that the formula is succeeding, while the

validation suite claims an explicit counterexample. However, in both cases the counterexample

involves invalid inputs, which we have explicitly ruled out.

We thus submitted every > (⊥) case as the property holding (not holding). These results were

given a weighting of 9, the strongest, showing complete confidence that the result is correct.

since we get explicit witnesses (counterexamples). The succeeding and failing cases are more

problematic; based on the results we achieved over the validation suite, we have chosen to

report them, even for the medium/easy code, as success and failure with weightings of 7 and 9

respectively. We weight the failing cases with the greatest confidence as they occur in execution

traces where a partial violation has been found, however for the succeeding traces we fear that a

violation may yet occur if the unwinding bound were extended further.

3.3.6.1 Discussion

For the 400 properties we analysed we returned 385 (96.3%) correct results, which gives us,

with the weights as explained above, a total score of 2991 marks. This compares fairly well to

the results achieved by the other teams taking part who for the same set of benchmarks achieved

the results in Table 3.7.

Team Score Total answers Incorrect answers Percent correct
Twente 3492 400 4 99.0%
Paris 3069 362 7 98.1%
Southampton 2991 400 15 96.3%
Vienna 1665 248 21 91.5%

TABLE 3.7: Scores and results for other RERS’12 participants who returned results for LTL
properties, on programs one to four, retrieved from [150]

The 15 wrong results fall into two different categories. In five cases, we find that the program

is failing (succeeding) with regard to the property, but the failure (success) result that we report

is wrong, because our unwind bounds are too small. In the remaining cases we find that the

program is bad with regard to the property, but the counterexample trace goes through an error

state; this trace should eventually be pruned away (using an assume(0)-statement) at an error

label, but the automaton accepts a number of additional inputs sufficient to push this error label

over the unwinding bound.
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In terms of overall score however, our entry came last as we were unable to submit results for the

majority of the tests. This is mostly because of the performance bounds reached when evaluating

the larger and harder tests, rather than any limitations of our LTL verification approach.

However, it seems to be clear that symbolic bounded software model checking is not the opti-

mal technique for the RERS competition: the programs implement finite state machines with a

relatively small state space, but bounding and unrolling under-approximates the reachable state

space while at the same time the symbolic valuation of state variables over-approximates it.

Similarly, the programs are much simpler than those typically encountered in software model

checking (e.g., the offline problems only use integer equality and contain no other operations

or data structures) while at the same time the large programs (approximately 70,000 to 180,000

lines of code) are too large to unroll them sufficiently often.

3.3.7 Conclusions

Clearly, symbolic bounded model checking is not the best tool for solving the problems in

the RERS challenge—we could not handle many of the larger tests, and for the reachability

properties at least, ESBMC is orders of magnitude slower than Java Pathfinder, an explicit-state

model checker for Java [156].

However, we are encouraged that ESBMC, a general-purpose multi-threaded C model checker,

has been able to generate useful analyses of these large and somewhat unusual systems. For

the LTL properties, we produced 15 wrong results and achieved a success rate of 96.3%, which

is relatively close to the winner’s success rate of 99.0%. We believe that our software model

checking approach will become more competitive as the programs become more complicated

(e.g., use of larger alphabets, arithmetic operations in the state updates, or data structures), and

plan to participate in future Challenges with such problems.

In fact, revising the benchmarks used in RERS nearly two years later (in preparation for the

submission of [127]), we discovered that the latest developmental version of ESBMC evaluates

all the properties two orders of magnitude faster than when we originally took part, increasing to

three orders when using a faster SMT solver (see Chapter 4). This greatly increases the number

of unwind bounds that we can feasibly reach.

3.4 Discussion

In this chapter, we have taken an existing approach for verifying LTL properties over a model

of a system under test, and have extended it into a form where it can be directly applied to

an ANSI-C software code base, without modification, permanent transformation, or significant

technical expertise from the verification engineer.
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We have evaluated our approach, and made improvements where necessary to increase its per-

formance to a level where it can verify LTL properties reasonably quickly (i.e. in less than an

hour).

The method has been tested on a series of benchmarks and properties that are both of our own

devising and also taken from an industrial piece of software (the pulse oximeter). We have also

used our method to verify synthesised properties in a verification competition, have have com-

peted reasonably well (in terms of accuracy) against the other participants in the competition.

We have also explored how the value that an LTL property evaluates to can be extended to

provide more meaningful information about the manner in which the property holds over the

system under test, and used it to verify liveness properties in ANSI-C software.

The precise contributions of this chapter are:

• The first application of LTL model checking to an ANSI-C code base.

• The first model checking method for full LTL that uses bounded model checking, rather

than BDD’s.

• This first bounded model checking method that gives meaningful information about live-

ness properties.

3.4.1 Limitations

Our approach does operate under a few constraints, which we enumerate here.

3.4.1.1 Bounding of loops

The premise of our approach is that we are dealing with finite prefixes of infinite traces. This

allows us to bound the outermost loop in the program, and the bound determines the length of the

prefix explored. Bounding inner loops, however, could cause their early termination resulting in

a trace that is not a true finite prefix on an infinite trace. With a small amount of work we could

independently bound them and apply an unwinding assumption (detailed in Section C.1.3) that

ensures the only loop exits permitted do so in a consistent state. This however would reduce

the completeness of the verification, as traces with deeply unwound internal loops would not be

examined.

In practice none of the systems that we have verified have had such inner loops. Additionally,

the embedded systems that ESBMC targets often implement some form of state machine or have

a single outer event loop around all their behaviours.
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3.4.1.2 Liveness properties in multithreaded systems

As discovered in Section 3.2.7.2, the verification of liveness properties against multithreaded

systems is still difficult as the weak fairness that ESBMC’s thread scheduler models will in-

evitably produce a schedule that evaluates to ⊥p. This is a limitation caused by the nature of

multithreaded model checkers however, and not by our approach to LTL model checking.

3.4.1.3 Global variables

Our approach requires that the expressions in the LTL formulae only refer to global variables in

the program under test. This is partially to avoid having to specify the scope in which each C

expression should be evaluated, but more generally because function-locally scoped and dynam-

ically allocated variables have a lifetime independent of the program under test, whereas global

variables exist and have a defined value for as long as the program is running.

Were such non-global variables to be addressable in the LTL formula we verify, the semantics of

the lifetime of the variable may need to be defined: for example, does the property hold when the

variable is out of scope, does the property become violated when the variable ends its lifetime?

Recursion leading to multiple instances of a lexical variable becomes particularly gnarly.

Again, the embedded software that ESBMC tends to be applied to have many global state vari-

ables and few local variables as stack depth on microcontrollers is limited. They also tend to

have no dynamically allocated memory at all.

3.4.1.4 Expression Independence

The ANSI-C expressions used in our LTL formula may not be independent—for example, {a
== 2} and {a == 3} cannot be true at the same time. Our static analysis of the automata is

unable to detect this, and as a result may misclassify formula. Consider {p} =⇒ F({q} ∧
{!q}): if p ever becomes true then the future condition can never be satisfied, meaning any

state where p holds is a bad prefix. However, as the analysis algorithm is unaware that the two

C expressions q and !q are not independent the worst result we find is ⊥p 12

This flaw does not seriously affect the result of our approach as it can only make the responses

more conservative, by considering that unfeasible transitions might occur. It will only ever

weaken > or ⊥ to their >p and ⊥p, respectively. Significant effort would be required to analyse

the C expressions and identify common ANSI-C variables in them, and even then different C

variables may be dependant due to actions in the program under test; identifying such behaviour

is a model checking problem in itself.
12Note that if we had written ¬{!q} then the ltl2ba algorithm would have been able to identify the accepting trap.

The ANSI-C expressions are identified as being the same proposition if the parse tree of the expression is identical
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3.4.1.5 Indirect variable accesses

As identified in Section 3.1.2.2, our approach does not currently handle indirect assignments to

lexical variables. The solution to this is however trivial and explained in that section.

3.4.2 Future work

The most beneficial effort in the future to improve our method, would be identifying some

strong-fairness guarantee that can be supplied in ESBMC’s multithreaded model checking be-

haviour, that would allow for liveness properties to be verified. As it stands, this is the only

serious limitation of formula that can be checked from which our method suffers. Such a guar-

antee is fraught with difficulties though, because in symbolic execution it is difficult to ensure

that one thread “runs as often as all other threads”, as there is no good definition of how much

progress is made by the execution of one thread. Neither assignments executed nor number of

visible statements reasonably map onto “time elapsed”, on which fairness is defined.

Otherwise, an automated method of evaluating a program as the unwinding bound is increased

would be beneficial, as our method defines a “well behaved” liveness property as one where >p

is reported frequently as the bound is changed. Recent developments [88] may ease this process.

Improved performance of this method would be of use, in terms of verification time and the size

of input that it is able to interpret. Such improvements would have to be entirely provided by

the underlying model checker (ESBMC), and are perennial demands on model checking tools.

3.4.3 Related work

We cover the background of LTL model checking in Section 2.3.3. Here we examine existing

LTL model checkers that are comparable to our approach.

SPIN [92] is a well known software model checker that operates on concurrent program models

written in the Promela modelling language. SPIN operates with explicit state and uses state

hashing to reduce the quantity of state space it explores. SPIN also allows users to specify

an LTL formula to verify against the execution of a model by using BA in a similar manner

to our work. While SPIN is well established as a model checker, the requirement to re-model

codebases in Promela can be time consuming.

Java PathFinder is a Java Virtual Machine (JVM) that performs model checking on Java byte-

code. It also operates with explicit state and uses state matching to reduce the search space, but

can also operate symbolically for the purpose of test generation and coverage testing. Verifi-

cation of LTL formulae can be achieved with the JPF-LTL [132] extension which uses BA and

method invocation monitoring to inspect the execution of the model.
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Staats and Heimdahl [148] take Simulink models and verify that a prototype Simulink-to-C

translator produces code that satisfies the same properties as the Simulink model. A set of

predetermined safety properties described in LTL are verified first against the Simulink model,

then against the emitted C code. A C monitor is devised, and a feature of the converted model is

used to select code locations where the monitor must be inserted. Their approach is not designed

to support the checking of liveness or co-safety properties.

Leucker and Schallhart [116] review the field of run-time verification and cover its differences

from model checking, as well as various LTL-like logics for analysing finite prefixes of traces.

More expressive ways of describing system properties are explored, as well as the potential for

run-time analysis beyond verification.

The DIVINE model checker [21] is an explicit state model checker that supports full LTL spec-

ifications over finite state models. Their recent work [19, 142] has focused on supporting LTL

model checking in C and C++ software, through the use of the LLVM compiler infrastructure.

Their work differs from ours in two significant aspects: first, as an explicit state model checker

they do not deal with finite prefixes of an infinite trace, but instead attempt to find an accepting

loop through a finite model by enumerating the full state space [20]. Second, they annotate the

source file with (sometimes conditional) directives to set the propositions that the LTL formulae

are expressed over.

3.4.4 Conclusions

Context-bounded model checking has already been used successfully to verify multi-threaded

applications written in low-level languages such as C. However, the approach has largely been

confined to the verification of safety properties. In this paper, we have extended the approach to

the verification of liveness properties given as LTL formulae against an unmodified code base.

We follow the usual approach of composing the BA for the never claim with the program, but

work at the actual code level. We thus convert the BA further into a separate C monitor thread

and check all interleavings between this monitor and the program using ESBMC. We use a

four-valued LTL semantics to handle the finite traces that bounded model checking explores.

Our results so far are encouraging, and we were able to verify a number of liveness properties

on the firmware of a medical device; in future work, we plan to extend the evaluation to a

larger code base and wider variety of properties. There are still considerable opportunities to

improve performance and to execute on more capable computer platforms. For multi-threaded

simulations, the state hashing reported in our SEFM 2011 contribution [125] has proved to be

very useful, cutting verification times by about 50% on average. We expect that an improved

hashing implementation, for example removing serialisation, will improve these results further.
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Problem1 Problem2 Problem3 Problem4
\n 9 10 11 12 13 14 9 10 11 12 13 14 9 10 11 12 13 14 9 10 11 12 13 14
0 >p >p >p >p >p >p >p >p >p >p >p >p > > > > > > ⊥p > > > > >
1 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p − − −
2 >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
3 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
4 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
5 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p − −
6 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
7 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
8 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p −
9 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p − −
10 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
11 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
12 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p − −
13 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
14 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p > > > > >
15 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
16 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
17 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p >
18 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p −
19 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
20 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
21 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
22 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
23 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − >p −
24 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
25 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
26 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p − −
27 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
28 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p −
29 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
30 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
31 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − − −
32 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p − −
33 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − − −
34 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
35 >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
36 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
37 >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
38 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
39 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
40 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
41 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
42 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
43 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
44 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
45 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
46 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p − − −
47 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
48 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
49 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p −
50 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
51 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
52 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − − −
53 >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
54 >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
55 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
56 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
57 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
58 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
59 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p − − −
60 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ − −
61 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
62 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p > > > > > > ⊥ ⊥ ⊥ ⊥ − −
63 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
64 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
65 >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
66 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
67 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
68 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
69 >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
70 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ − −
71 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
72 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
73 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
74 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
75 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p > > > > > > ⊥ ⊥ ⊥ ⊥ − −
76 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p − − − −
77 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − >
78 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
79 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p − − −
80 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
81 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
82 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
83 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ ⊥ −
84 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
85 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p −
86 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ − −
87 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
88 >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
89 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p −
90 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p − −
91 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
92 >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
93 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
94 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
95 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
96 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p >p >p >p − >p −
97 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
98 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p > > > > >
99 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −

TABLE 3.8: Results for behavioural properties. Only claims are shown, for different unwinding
bounds (n = 9 to n = 14). “−” denotes a time-out (tmax = 3600s). Boldface denotes changes

in the outcomes as the unwinding bounds change.



Chapter 4

Efficient solvers and encoding for SMT
formulae

Many symbolic model checkers operate by transforming their input into a form suitable for an

automated theorem prover to process, separating the concerns of producing a formulation of the

model checking problem, and actually exploring whether the formula is true or not. In the case

of ESBMC and similar solvers, this corresponds to the way in which high level concepts of the

C language are translated into quantifier free first order logic,1 to be solved by an SMT solver.

SMT and SAT solvers are popular with software model checking, partly because bounded model

checking originated through the use of SAT solvers [37], but also because the input format

correlates closely with how imperative software operates. Symbolically represented variables

with constraints can easily represent the computations performed during a program execution,

and SMT solvers support expressions over integers, reals, bitvectors and arrays which matches

the operation of imperative software operation. SMT itself is brought together by the SMTLIB

standard [24], which defines a syntax and semantics for describing SMT formulae, the features

that solvers must support, and how the solver is to be configured. The standard also defines a

set of logics, each of which defines a set of features that may be used in formulae. For example,

“BV” allows the use of quantifiers and bitvectors, while “QF AUFLIRA” disallows quantifiers,

and allows arrays, uninterpreted functions, and linear arithmetic of integers and reals.

The manner in which model checkers solve reachability problems with such solvers is of great

interest, as it governs the performance with which model checking problems can be solved. De-

tails on precisely how different model checkers implement their translation are, however, sparse.

Convention in the research field [31] means that publications rarely descend to such a level, pre-

ferring to focus on high level formulations of the encoding and theoretical advances. I have

been unable to find any technical reports that describe the way in which high level programming

constructs are reduced to first order logic, except where that particular feature is the subject of
1i.e., propositional logic with theories of equality, optional theories such as bitvectors, arrays and linear arithmetic,

but individual variables cannot be quantified. The whole formula is implicitly quantified over the value of all variables

89
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some optimisation or other interest. In the case of CBMC, from which ESBMC inherits, the

closest and most detailed document is [111], which focuses on the high level decomposition of

C down to CBMCs internal execution format, and then on to assignments. LLBMC [121] too

offers a high level view, mostly concerned with the decomposition of LLVM bitcode into an

unrolled program.

I believe this situation is severely sub-optimal, as greater knowledge and understanding of

how different tools perform their encoding can only lead to discussion and technological ad-

vancement. Radically different encodings of multithreaded verification problems (discussed in

Section 5.6) have shown large performance improvements on ESBMCs approach; encouraging

greater experimentation with such encodings would almost certainly advance the field. To aid

this, I have described ESBMCs encoding in detail in Appendix C, which is relevant but not

necessary reading for this chapter.

In this chapter I examine how to improve the performance of ESBMC by increasing the speed at

which SMT formulae are solved. Two matters are considered: firstly, which SMT solver is the

fastest to solve the particular class of formulae that ESBMC produces. Secondly, how ESBMCs

encoding of an unrolled (SSA) program to SMT can be optimised for faster solving times.

I select the set of SMT solvers used by similar model checking tools to ESBMC and evaluate

them, the widest such evaluation I am aware of in the literature. I identify two techniques for

improving the construction of memory references which have not been evaluated before and

compare them. I also evaluate the effectiveness of a previously proposed technique for reducing

the size of the SMT formula encoded.

For evaluation, I use the International Competition on Software Verification [31, 32, 33] (SV-

COMP) suite, from the 2014 competition. SV-COMP, being an aggregation of benchmark suites

used by software model checkers (for the C language, the largest such suite collected to my

knowledge), is suitable for verification as almost all benchmarks have a single well defined

reachability property to check2, and with 2877 tests from 12 sources [73] is sufficiently large

and diverse to have confidence that a wide range of C language features are exhibited by the

suite.

I do not consider the SV-COMP score achieved in this chapter. ESBMC reports the wrong result

for some benchmarks (due to an insufficient unwinding bound, or bugs within ESBMC), and in-

correct results are seriously penalised by the scoring scheme. This gives rise to scenarios where

an optimisation increases the number of SV-COMP benchmarks that successfully complete and

report a result, but a lower score is achieved because the newly reported results are incorrect.

As we care here about improving performance and thus increasing the number of completed

verifications, the SV-COMP score is irrelevant.
2The “memory safety” set of tests have implicit properties, that the memory accesses performed by the programs

are always correct
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Organisation Section 4.1 identifies different SMT solvers that can be used and tests ESBMC

with them. Section 4.2 examines how memory accesses in ESBMC are encoded and experi-

ments with different encoding approaches. Section 4.3 details a more efficient encoding of the

execution guards used by ESBMC. Section 4.4 draws conclusions.

4.1 Extending solver support

Numerous SMT solvers are available that comply with the SMTLIB standard, and use a variety

of techniques and heuristics to optimise the solving of formulae. The community also runs a

performance competition [23] to evaluate which solvers are the best, categorised by the different

logics that they support.

An obvious question to ask is which SMT solver is the fastest at solving the formulae produced

by ESBMC? The current default is Z3 [72], as a previous evaluation with ESBMC [70] found

it to be the fastest solver at the time. In the intervening five years however there have been

substantial improvements in SMT solving technology, and additional solvers are now available.

Within ESBMC’s peers at the Software Verification competition a variety of SMT solvers are

used. Z3 is the most popular, and most of the participants of SMT-COMP are used by at least

one model checker. Some tools make use of SAT and constraint solvers too. The literature

does not appear to feature any robust comparison of SMT solver performance when applied to

automated verification, aside from ESBMCs previous evaluation [70] and an evaluation for path

feasibility in the context of symbolic execution [134].

To answer the question of performance, I select the best performing solvers from SMT-COMP’14

[65] for the logic that ESBMCs formulae are encoded in, QF ABV (quantifier free with arrays

and bitvectors), and that are also used by our peers at SV-COMP’14. These solvers are described

in Section 4.1.1. I omit the solver SMTInterpol from this list as it operates in the Java Virtual

Machine, which is incompatible with ESBMCs native environment and would require a large

amount of time to work around.

Of the solvers described below, I would expect Boolector to perform the best, given that it

wins the QF ABV category of SMT-COMP’14. This would be in contrast to ESBMCs previous

evaluation which found Z3 to be the fastest.

During this evaluation I also implemented support for the metaSMT framework [135], which

offers a common interface to a suite of SMT solvers. I did not run any experiments with it

however, for two reasons. First, the primary interface to metaSMT is via a domain specific

language that is statically converted to an abstract syntax tree at compile time (through the use

of Boost.Proto), which is not compatible with the dynamic creation of formula at runtime that

ESBMC performs. Secondly, when directly interacting with metaSMT’s “middle end” [135] to

dynamically construct formula, significant overhead was introduced during conversion time, to
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the extent of frequently increasing runtime by 50%. Given these limitations, I chose instead to

manually implement solver backends myself.

4.1.1 Supported solvers

The Z3 solver [72], from Microsoft Research, is a general purpose theorem prover that accepts

SMTLIB as an input. A wide range of input logics are permitted, and Z3 has numerous ex-

tensions to allow for complex datatypes (such as tuples), as well as lists, sets, and recursively

defined datatypes. Z3 also possesses a fixedpoint engine, known as µZ3. Of all these features,

ESBMC only uses the SMTLIB input and tuple support. Z3 has a history of scoring highly in

SMT-COMP, and won more than half of the categories in 2011 [63]. It has not, however, en-

tered the competition since, and has not had a release since January 2013, leading me to believe

that Microsoft have ceased maintenance for the project. Z3 is distributed under the Microsoft

Research License Agreement (MSR-LA), and has had its source code released under the same

license since 2012.

Yices [77] is a SMT solver developed at SRI international, supporting all of the SMTLIB stan-

dard, as well as extensions such as MAX-SMT problems. Yices is used by SRI in internal

projects, but is also distributed in binary form under a proprietary non-commercial license. Yices

version 2 took part in SMT-COMP14 [65], and won 10 out of 34 of the categories.

Boolector [44] is a SMT-flattening tool that takes formulae written in SMTLIB (or Boolectors

own input format) and converts them to SAT formulae. Several SAT solvers can be chosen

to solve the subsequent formula. Boolector focuses on producing an initial abstraction of the

SMT formula, then refining it to be more accurate as the SAT solver generates satisfying as-

signments. Boolector has been released under academic-free and GPL3 licenses in the past, and

since the latest version (1.6) is released under an MIT-like license with non-commercial and

no-competition-use clauses. Of the two categories that Boolector entered in SMT-COMP14, it

won both.

MathSAT [51] is a general purpose SMT solver, with aims to be a fully featured and long

lived solver, for use in academic as well as industrial contexts. MathSAT supports all the usual

SMT logics, but also supports the creation of Craig-interpolants (see Section 2.1.5.3), partial

assignment enumeration, and other features requested by industry. MathSAT’s license is non-

commercial academic-free. It last competed in SMT-COMP in 2012[64], when it won one

category and entered three more.

CVC4 [2] is a theorem prover with SMTLIB compatibility, which supports a wide range of

logics, including those with quantifiers. CVC is a collaboration between many US universities,

and has a long and detailed history. It is distributed under the terms of the new BSD license. It

took part in SMT-COMP14, winning 7 out of 34 categories, and participated in all but two of

the available categories.
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As well as backends for interacting with the above solvers, I have also implemented a backend

that works with the textual interface to SMTLIB solvers. ESBMC and any SMTLIB compliant

solver can communicate across a socket or pipe using SMTLIB syntax, allowing any additional

solver for which ESBMC does not have a backend to be plugged in, albeit with an overhead due

to serialising information through a communication channel.

4.1.2 Comparison

I now examine the performance of each SMT solver, when applied to the SV-COMP’14 [33]

benchmark suite. ESBMC was run on each benchmark in the suite once per solver, with the

following command line:

esbmc --unwind 8 --no-unwinding-assertions --timeout 15m

--memlimit 15g --64 --tuple-sym-flattener --no-slice

--context-switch 3 -DLDV ERROR=ERROR -Dassert=notassert

-D Bool=int --no-assertions --no-bounds-check

--no-pointer-check --error-label ERROR

--no-div-by-zero-check

This enforces the operational constraints of SV-COMP, limiting ESBMC to consuming only

15 minutes of runtime, and 15GB of memory. Other options configure ESBMC to only report

reaching the label ERROR as a verification failure, with all other program properties being dis-

abled. A number of performance flags are set (such as --no-slice), and workarounds for

compiling certain benchmarks (such as defining the Bool symbol as an integer).

The unwind bound is set to 8 loops, as this is the highest bound we have used when submitting

ESBMC to SV-COMP in the past, and has given us the greatest score. The multithreaded context

bound is set to 3 context switches for the same reasons.

In this section, I compare the performance of different solvers by looking at the number of

benchmarks that either crash in out-of-memory conditions or timeout when ESBMC uses that

solver, and the amount of time consumed across all the benchmarks that did not crash or time

out under any solver. In addition, I omit 17 tests where ESBMC could not parse the input file

due to faults in the C parser, which does not support floating point hexidecimal constants or the

C11 Thread local keyword. The omitted tests are presented in Table 4.1.

The version numbers of the solvers used in this evaluation are presented in Table 4.2. I delib-

erately chose an older version of Z3 (4.0 versus 4.3) as Z3 releases from 4.1 onwards have a

serious performance regression that I do not believe Microsoft intend to fix.3 No solvers dis-

agreed on the outcome of any benchmark: while some failed to produce a result, no solver

reported a property violation where another reported successful verification, and vice versa.
3Specifically, an additional 112 tests time out and 30 more crash in out-of-memory conditions when ESBMC is

run over the SV-COMP benchmark suite with Z3 4.3
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Directory Testname
pthread-ext 40 barrier vf false.i
pthread-ext 41 FreeBSD abd kbd sliced true.i
ldv-linux-3.4-simple 32 7 cilled false const ok linux-32 1-

drivers–net–wireless–p54–p54usb.ko-
ldv main0 sequence infinite withcheck stateful.cil.out.c

pthread-ext 42 FreeBSD rdma addr sliced true.i
ldv-regression test union cast-1 true.i
ldv-linux-3.4-simple 32 7 cilled false const ok linux-

32 1-drivers–staging–keucr–keucr.ko-
ldv main1 sequence infinite withcheck stateful.cil.out.c

pthread-ext 46 monabsex2 vs true.i
ldv-consumption 32 7a cilled true linux-3.8-rc1-32 7a-drivers–net–ethernet–sfc–

sfc.ko-ldv main2 sequence infinite withcheck stateful.cil.out.c
ldv-consumption 32 7a cilled true linux-3.8-rc1-32 7a-drivers–net–ethernet–sfc–

sfc.ko-ldv main0 sequence infinite withcheck stateful.cil.out.c
pthread-ext 43 NetBSD sysmon power sliced true.i
ldv-regression test union cast.c true 1.i
ldv-linux-3.4-simple 32 7 cilled false const ok linux-32 1-

drivers–usb–storage–usb-storage.ko-
ldv main0 sequence infinite withcheck stateful.cil.out.c

ldv-regression callfpointer.c false.i
pthread-ext 44 Solaris space map sliced true.i
ldv-regression test union cast.c true.i
ldv-consumption 32 7a cilled true linux-3.8-rc1-32 7a-drivers–net–ethernet–sfc–

sfc.ko-ldv main3 sequence infinite withcheck stateful.cil.out.c
ldv-regression test union cast-2 true.i

TABLE 4.1: SV-COMP’14 benchmarks omitted from SMT solver comparisons due to parsing
and conversion errors

Z3 Boolector MathSAT CVC4 Yices
4.0 1.5.118 5.2.8 1.3 2.2.0

TABLE 4.2: Solvers used in this evaluation, with version numbers

The number of tests failing due to crashes or timeouts, and the number that successfully report

a result are given inTable 4.3. A crashing test is one where ESBMC terminates after receiving

the SIGSEGV or SIGABRT signals, caused by either a programming error in ESBMC, or the

process running out of memory. As all the tests are run in exactly the same way, any errors in

ESBMC will present themselves in all runs of the benchmark. Within the set of crashing tests, I

identify those that crash due to running out of memory by searching the program output for the

C++ std::bad alloc exception, as well as other error strings printed by each solver when

they fail to allocate memory.

These results appear to show Boolector, MathSAT and Z3 sharing a small set of of tests that

always crash or run out of memory. Of the benchmarks on which these three solvers crash, 151

of them are in common. CVC and Yices however, crash on a much greater number of tests.
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In terms of speed, only CVC shows a substantial reduction in performance relative to the rest

of the solvers, timing out in more than 15% of the 2877 total benchmarks. Balancing across

both memory consumption and timeouts, Boolector comes out as the best performing solver,

producing a result in the greatest number of tests (2471 out of 2877). Z3 is not far behind

however, with only 23 fewer completed benchmarks.

Solver Crashes (OOM) Timeouts Completed
Boolector 164 (44) 225 2471
CVC4 235 (65) 470 2155
MathSAT5 165 (70) 284 2410
Yices2 248 (45) 223 2389
Z3 164 (54) 248 2448

TABLE 4.3: Crashed, timed out and completed tests for the SV-COMP’14 benchmarks, with
an unwind bound of 8, and different solvers. The (OOM) field represents the number of crashes

that were caused by out-of-memory conditions.

Table 4.4 contains a breakdown of the cumulative amount of time taken to verify the benchmarks

in a directory of the SV-COMP’14 repository [73]. The timing resolution for each test is one

second. I group these by the containing directory rather than the categories that SV-COMP

defines as all the benchmarks in each directory are contributed by a single source, and it will

be easier to observe the different characteristics of different contributions this way rather than

by aggregating across categories. To make this a fair comparison between solvers, those tests

where any solver times out or crashes are omitted (and are covered by Table 4.3). The results

themselves are a mixed bag: no solver dominates the others overall, although Boolector delivers

the fastest time in 17 of the 26 directories, 5 of which are shared with other solvers. The total for

all directories shows that Boolector is the fastest overall, and in two directories (bitvector and

eca) is 50% faster than any other solver. Yices achieves this in the loops directory, apparently

because of its very swift ability to identify unsatisfiable formulae.

This data shows that Boolector compares favourably with the other SMT solvers that I have

tested, and as a result ESBMC will be using Boolector at the next Software Verification com-

petition, possibly as a default solver. Given that some solvers are better than others for certain

classes of problem, it may also be effective to identify which solver is best for a particular

problem, if reasonable heuristics can be developed. This comparison of SMT solvers is a good

starting point for identifying such heuristics, but more work is required.

4.2 Improving accuracy and efficiency of memory references

As mentioned previously in this chapter, a particularly complex portion of ESBMC’s encoding

of C expressions to SMT relates to pointers: specifically, the fact that one may address any

portion of a data object in a pointer (subject to certain rules), and dereference that pointer to

access the corresponding piece of data. As an example, one may cast a pointer to an integer into
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Directory Num tests Z3 Btor MSAT CVC Yices
bitvector 35 115 30 107 1620 192
bitvector-regression 13 3 1 3 2 1
ddv-machzwd 13 3 3 5 5 4
eca 35 1204 320 2068 8797 902
heap-manipulation 1 6 7 32 395 17
ldv-commit-tester 24 93 87 327 186 78
ldv-consumption 38 1067 1067 1074 1285 1072
ldv-linux-3.0 11 1110 948 931 931 937
ldv-linux-3.4-simple 1076 10783 10732 10975 12087 10862
ldv-regression 36 3 3 7 8 2
list-ext-properties 17 2 1 7 11 3
list-properties 12 5 4 11 31 4
locks 13 2 2 2 46 7
loops 58 12 65 25 201 1
memsafety 14 9 4 514 177 5
memsafety-ext 8 3 2 5 4 3
ntdrivers 1 1 1 1 1 2
ntdrivers-simplified 10 3 5 6 94 3
product-lines 485 154 148 171 9032 125
pthread 18 3289 1819 2874 3857 2806
pthread-atomic 8 49 42 50 51 51
pthread-ext 20 12405 9902 12483 12459 12466
recursive 19 51 7 13 581 5
seq-mthreaded 100 104 111 886 3384 137
ssh-simplified 25 85 32 34 4402 85
systemc 12 126 35 58 2047 51
TOTAL 2102 30687 25378 32669 61694 29821

TABLE 4.4: Total cumulative verification time, per directory in SV-COMP’14, of all bench-
marks that successfully completed verification for all solvers. Time measured in seconds. The
fastest solver per directory is typeset in boldface. All benchmarks in the “ssh” directory in the

benchmark suite timed out with the CVC solver, and thus no results are presented

a character pointer, increment it, and then dereference the pointer to read a byte internal to the

integer.

The C specification is very tolerant of such data manipulation, and requires that every data object

valuation has a consistent byte representation, a sequence of byte values that represents that data

object valuation. C programs are allowed to access any part of a data object through a character

pointer to examine this byte representation. The C specification does require, however, that

all memory accesses must lie within the bounds of the data object, and that pointers must be

sufficiently aligned for their type, i.e. a 4 byte integer pointer must always be 4-byte aligned.

CBMC’s [53] encoding to SAT was very amenable to this behaviour, as all data objects were

ultimately reduced to a vector of boolean values, which could be individually addressed and

operated upon without affecting the rest of the data object—essentially, a one-bit byte model.

LLBMC [121] represent all memory as a flat byte array, a technique they admit is not particularly
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1 struct { int foo; int bar; } xyzzy;
2 int *p;
3
4 if (nondet_bool()) {
5 p = &xyzzy.foo;
6 } else {
7 p = &xyzzy.bar;
8 }
9

10 *p = 0;

FIGURE 4.1: A piece of code with a nondeterministic pointer offset valuation

efficient. ESBMC’s SMT encoding does not have either such memory models however, and

uses a typed representation of data objects. Accesses to the internals of a composite data object

require packing and unpacking of the type: consider an integer inside an array, inside a tuple.

To access an arbitrary byte within it, one must project the field from the tuple, select the element

from the array, and then encode an SMT extract expression against the integer.

The most pathological circumstances are those where the offset into the data object is unknown,

and potentially a range of values. This can be caused by any program nondeterminism, for

example in Figure 4.1, where the pointer p may point at one of two locations in the xyzzy data

object. ESBMC cannot statically determine exactly where p may point, and so it considers p as

potentially pointing at any byte of xyzzy, including locations where an access will range across

the struct field boundaries. Worse, assignments must consider an assignment to any location of

the data object, including aggregate variables such as structures or arrays.

Such circumstances require complicated SMT expressions to be built, which versions of ES-

BMC prior to v1.22 did not implement completely, leading to crashes and sometimes incorrect

results. For SV-COMP’14, I tested two approaches to resolving this problem. Both of the ap-

proaches fail to preserve values assigned to padding between elements of structures or arrays,

in violation of the C specification that requires that data objects can be treated as arrays of

characters if necessary (although this causes their values to become indeterminate). This is not

behaviour ESBMC has supported before, however, and so I do not consider it further.

4.2.1 Unaligned byte-accurate memory model

My initial attempt at implementing such memory references tried to produce a precise expression

for each possible memory access. For dereferences where the offset into the data object could

be statically determined, the addressed value is projected out of the containing data object, or in

the case of a write when the data object is updated with the relevant field modified. The most

pathological case found in this approach was where a large memory access was performed that

overlapped several smaller data objects, for example an unaligned 32 bit read in an array of

16-bit integers, in such a way that data was read from 3 elements of the array.



98 Chapter 4 Efficient solvers and encoding for SMT formulae

For memory references where the offset into the data object is indeterminate, I initially attempted

to convert the data object to a single bitvector and then update a parameterised portion of it.

However this approach swiftly consumed large amounts of memory and frequently prevented

ESBMC from completing verification. Instead, for these references I created an array of bytes,

and converted the data object into its byte model representation within that array. Reading data

is then performed by selecting the bytes corresponding to the desired offset, then coercing them

back into the desired datatype. If a write is to occur, the data object must be reconstructed from

the byte representation array.

4.2.2 Align-guaranteed memory mode

While considering the previous attempt to implement memory references in SMT, I observed

that the memory references that I consider the most complex were those that violated C memory

alignment rules. Alignment rules require that any pointer variable must be aligned to at least

the alignment of the pointer type—so for example, an integer pointer’s value must be aligned to

at least 4 bytes, for 32-bit integers. This causes pathological references, such as the 32-bit read

over an array of 16-bit values described above, to be undefined by the C specification, and thus

to be program errors.

To take advantage of this, I first encode property assertions when dereferences occur during

symbolic execution, to guard against executions where an unaligned pointer is dereferenced.

This is not as strong as the C standard requirement, that a pointer variable may never hold an

unaligned value, but it provides a guarantee that any pointer dereference will either be correctly

aligned or result in a verification failure. This means the construction of memory references in

SMT need only consider offsets into the data object that are aligned.

Further, I arrange the memory layout within C structures so that each field of the structure has the

greatest possible alignment guarantee.4 This ensures that the largest possible type in ESBMC

can only ever reference one structure field without breaking alignment rules. Smaller types also

cannot create a reference to more than one field in a data object without violating alignment

rules. This constructively prevents any memory reference from legally referring to more than

one structure field at a time. Arrays, however, may still have more than one element accessed

during a dereference (consider a character array aligned on a 64-bit boundary accessed by a 64-

bit integer pointer). This arrangement is permitted by the C specification as the padding between

structure fields is an implementation defined matter.

At the SMT level, as with the previous encoding any statically determinable offsets into data

objects are directly constructed. Indeterminate offsets are constructed considering the alignment

guarantee of the reference: because memory references cannot cross fields we can consider each

structure field individually, and the dereference either evaluates to the field itself or bytes within
4The largest variable that ESBMC supports is a 64 bit integer or double precision floating point number, so the

greatest alignment in ESBMC is 8 bytes.
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it: no fields are composed together, as they were with the previous approach. Arrays with

a smaller type than that of the memory reference may have multiple elements accessed, but

alignment rules guarantee that the access begins at the start of an element, not the middle, and

includes a whole number of elements.

4.2.3 Comparison and evaluation

The primary purpose of these memory models is to reduce the number of SV-COMP benchmarks

containing memory references that ESBMC could not encode. Each of them eliminate the 80

benchmarks in SV-COMP’14 that were signalling that an unimplemented memory reference

format was encountered. Of more interest however is which of these two memory models is

the more efficient. Table 4.5 shows the aggregate results when each model is applied to the

SV-COMP’14 benchmarks, using the command line given in Section 4.1. Note that the versions

of ESBMC used in this section are older than those used through the rest of this thesis, as

the development branches of the two memory models were not been updated after they were

completed. Accordingly, the results here are not directly comparable with any other results.

ESBMC configuration Timeouts Crashes (OOM) Completed tests
Byte-precise model 309 150 (71) 2387
Aligned-access model 259 113 (49) 2488

TABLE 4.5: Verification results when running ESBMC with the byte precise and aligned mem-
ory models. “Timeouts” counts the number of tests that terminated after running out of the
allocate 15 minutes, “Crashes” the number of tests that crashed and (OOM) the number that
crashed in out-of-memory conditions, “Completed tests” the number of tests that completed

verification. These totals omit 17 tests that ESBMC could not parse, see Section 4.1.2

These results show that there is a notable improvement in both the number of tests that time out

and those that run out of memory, between these two memory models. In particular, 100 more

tests completing verification is most welcome.

The addition of the alignment properties used by the align-guaranteed memory model can be

helpful for detecting undefined behaviour, which is ESBMCs primary task. These properties

are not, however, of any use during the Software Verification competition, as the competition

assumes that all of the benchmarks being verified already have correctly formed memory ac-

cesses.

4.3 Guard abstractions

Some of the largest SMT expressions produced by ESBMC are those evaluating the guard of

execution paths—i.e., whether under the current valuation of the formula, the path is followed or

not. The cause is the branching and merging of different paths through the program. Consider

the code in Listing 4.2, and the merging of different paths of execution through the program.
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1 int x = nondet_int();
2 int y = 0;
3 int i;
4
5 for (i = 0; i < x; i++) {
6 y++;
7 }

FIGURE 4.2: A loop with exit branches that depend on nondeterminism

When paths are merged, the guard of the resulting path is the disjunction of those paths merged

in. This technique is followed by CBMC, ESBMC and LLBMC. LLBMC presents [121] it in

the following manner, in terms of basic blocks rather than instructions. The guard G(b) of block

b is computed recursively using the predecessors P (b) of the block b, and the condition t(b′, b)

on entering block b from block b′. Then,

G(b) =
∨

b′∈P (b)

(G(b′) ∧ t(b′, b)) (4.1)

ESBMC handles this at a per-instruction level, but using the same formula. Effectively, the

guard is a combination of all the guards that must be true for a particular path to be explored.

ESBMC is only able to statically determine the truth of guards in a small number of cases, and

not at all in the presence of nondeterminism, and as a result the guard expression can become

large. In the worst case scenario, the guard can grow exponentially, when loops with conditional

exits that cannot be statically determined are composed. The guards for all paths through the

first loop will be encoded in the guard for each path in the second loop.

As the guard is used in every property assertion and assumption in the program, as well as phi

functions when merging paths, reducing the size of the guard accumulated could reduce the size

of the formula significantly. One way to counteract this would be to, once the guard reaches

a certain size (measured by number of sub-expressions), assign the guard expression to a new

boolean SMT variable, and use that new variable as the path guard from then on. This trades

the size of the guard expression for additional variables and thus state space in the program.

The authors of LLBMC [121] suggest that this is best implemented by creating a new boolean

variable on entry to every basic block, representing the guard for that block. This is the approach

that I have used when evaluating the optimisation in ESBMC.

4.3.1 Evaluation

To evaluate the guard-abstraction optimisation, I implemented a version where the current guard

is assigned to a new symbol upon every control flow merge. Paths through very deep conditional

statements may still posses large guards, they cannot however accumulate in size for any long

period of time, as control flow merges tend to be frequent. I then tested the feature on the
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SV-COMP’14 suite using the command line given in Section 4.1, and compare it against the

version of ESBMC used in Section 4.1 (without the guard-abstraction). As this optimisation

was proposed by LLBMC [121] and they use the Boolector solver, I also use that solver for the

evaluation. The results are presented in Table 4.6.

ESBMC configuration Timeouts Crashes (OOM) Completed tests
No guard-abs 225 164 (44) 2471
Guard-abs 223 148 (28) 2489

TABLE 4.6: Verification results when running ESBMC with and without the guard optimisa-
tion. “Timeouts” counts the number of tests that terminated after running out of the allocate 15
minutes, “Crashes” the number of tests that crashed with (OOM) the number that crashed in
out-of-memory conditions, “Completed tests” the number of tests that completed verification.

These totals omit 17 tests that ESBMC could not parse, see Section 4.1.2

Here we see that with the guard optimisation enabled, the number of timeouts decreases by a

negligible amount, not worthy of note. The number of test cases that result in out-of-memory

conditions however decreases by 16, a useful outcome from this optimisation.

4.3.2 Addition of slicing optimisation

The size of the guard expression has a secondary effect on ESBMC’s performance outside of

the SMT solver. ESBMC can use the “slicing” optimisation inherited from CBMC to reduce

the number of assignments in the program. Slicing [160] is a mechanism for eliminating re-

dundant or irrelevant portions of a program. In ESBMC, this is applied to the SSA program

(Section 2.4.2) before it is encoded to SMT to reduce the number of variable assignments, by

identifying variables not used in the evaluation of any property assertion. Every expression in

the SSA program must be examined to achieve this, and when program guards are large, the

amount of time consumed by the slice optimisation becomes very large. For example, enabling

the slice optimisation when running the SV-COMP’14 suite as described in Section 4.1 increases

the amount of time consumed by 40%.

This raises the prospect that the guard abstraction optimisation could compliment the slicing

optimisation, through its reduction of expression sizes. To evaluate this, I re-ran the tests above

with the slicing optimisation enabled, the results of which are presented in Table 4.7.

ESBMC configuration Timeouts Crashes (OOM) Completed tests
No guard-abs, Slicing 346 98 (42) 2416
Guard-abs, Slicing 218 85 (20) 2557

TABLE 4.7: Verification results when running ESBMC with and without the guard optimi-
sation, with the addition of the slicing optimisation. “Timeouts” counts the number of tests
that terminated after running out of the allocate 15 minutes, “Crashes” the number of tests that
crashed with (OOM) the number that crashed in out-of-memory conditions, “Completed tests”
the number of tests that completed verification. These totals omit 17 tests that ESBMC could

not parse, see Section 4.1.2
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With both optimisations enabled, ESBMC successfully completes a greater number of tests, with

2557 of the benchmarks successfully reporting a verification result. This is 86 more results than

the original configuration of ESBMC, without guard abstraction or slicing. The total number

of timeouts, crashes, and out-of-memory conditions is lower than with any of the optimisations

disabled.

Examining the results closer, we see that in normal ESBMC the slicing optimisation substan-

tially increases the number of tests that time out, while reducing the number of crashes. This is

in line with expectations: large program guards take a long period of time to slice, and that with-

out slicing the size of the SMT formula is larger, leading to greater memory consumption and

crashes. When the guard abstraction is enabled a significant reduction in timeouts is observed,

caused by the sliced expressions being much smaller.

I cannot claim any credit for the reduction in crashes caused by the slicing optimisation, but

I have demonstrated here that the guard abstraction optimisation reduces the size of the SMT

formula leading to a reduction in memory consumption, and compliments slicing by reducing

expression sizes leading to faster verification and fewer crashes when the two are composed.

4.4 Conclusions

In this chapter I have examined the performance of different SMT solvers when applied to the

SMT formulae produced by ESBMC, and evaluated two optimisations of the SMT formula

encoding.

The SMT solvers tested had a mixed set of results, in which only CVC and MathSAT proved

to be consistently slow solvers. Boolector, Z3 and Yices all demonstrated subclasses of prob-

lems where they verified problems faster than the other solvers, with Boolector having the best

performance overall, running the fastest in 11 directories out of the 27 in the benchmark suite,

and running in the smallest amount of time as an aggregate over all of the benchmark suite.

This is in line with Boolectors success in the QF ABV category of SMT-COMP’14 [65], and a

compelling reason to use Boolector as the default solver in ESBMC.

I have also identified a class of problem that ESBMC handles poorly (the construction of mem-

ory references), and evaluated two different approaches to solving this problem. When applied

to the SV-COMP’14 benchmarks, it is clear that the alignment-guaranteed memory reference

model, with smaller and less complex SMT expressions, leads to reduced verification time and

memory consumption.

Finally, reducing the number of SMT expressions in the formula through abstraction of the path

guard is shown to reduce the amount of verification time required, when used in conjunction

with another previously unfeasible optimisation.
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In total, the work presented in this chapter results in an improvement from 2448 of the SV-

COMP’14 benchmarks being verifiable (when using Z3, see Table 4.3), to 2557 being verifiable

(Table 4.7, which includes the align-guaranteed memory model).

An important conclusion to draw from this work, aside from the techniques that I have shown to

be effective optimisations, is that there is still significant scope for the verification of software

with SMT solvers to be improved. The performance of model checking tools it not simply

related to the way in which the piece of software being verified is unrolled, but also the manner

in which the underlying formula is encoded.





Chapter 5

Improving the performance of ESBMC
for multi-threaded programs

The state explosion problem remains the most significant barrier to verification of concurrent

software. In general, the verification task’s state space will grow exponentially with the size of

the program being verified, and lacking a dramatic theoretical breakthrough it is unlikely that

this problem can be reformulated to have a smaller state space. In light of this, I believe the

most practical way of increasing the feasibility of verifying concurrent programs is the develop-

ment and application of optimisations, to reduce the time required to explore the interleavings

produced by composing concurrent threads (see Section 2.2.1). These can be optimisations that

increase the speed at which individual states can be checked, or reduce the number of interleav-

ings in a program that need to be checked.

In this section I examine four optimisations I have implemented to improve the performance of

model checking concurrent programs with ESBMC, and explain their advantages and empirical

results to date. Of these measures, only the first (state hashing, Section 5.2) has been pursued

as far as publication [125], and is co-authored with Lucas Cordeiro, and my supervisors Denis

Nicole and Bernd Fischer; the work presented here is all my own, however. I evaluate Mono-

tonic Partial Order Reduction [106], which to my knowledge has not been applied to software

verification before. I implement incremental SMT solving to increase the speed at which states

can be verified, and use the availability of the SMT formula during symbolic execution to guide

exploration of the state space, a mechanism which has not been previously applied to concurrent

software in the literature.

More optimal encodings of the SMT formula that ESBMC creates during verification, and op-

timisations internal to ESBMC itself would improve the performance of verifying concurrent

software: they apply however just as well to single threaded verification. Such optimisations

are presented in Chapter 4, while this chapter covers optimisations only relevant to concurrent

software.

105
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Before studying optimisations, it is first important to understand how ESBMC explores con-

current programs. When symbolically executing any piece of code in a multithreaded context,

ESBMC checks whether the most recently executed instruction accesses any variable that is

shared with other threads. If it does, then ESBMC is at a context switch point, where it may de-

cide to switch execution to some other thread. The reachability tree (Section 2.2.1) is explored

by examining the path taken by each thread from a context switch point, and any subsequent

context switch points are found. Some of the literature on concurrent software describes this in

terms of transitions, where a program has some set of state transitions that modify the program

state, and state exploration occurs by composing transitions. In ESBMC, such a transition would

correspond to the path of a thread execution from one context switch point to another. At each

context switch point one transition would be available per thread, corresponding to the path that

each thread would take until they encountered the next context switch point.

The concept of an “Instruction” in ESBMC must also be explained: the C specification de-

fines the execution of C in terms of sequence points (for example the “;” statement delimiter).

All side-effects and operations of a statement are completed before a sequence point is passed.

No order of evaluation within a statement is defined, however, giving significant leeway for

compilers to re-order when different expressions are evaluated. ESBMC compiles such state-

ments down to individual variable assignment instructions, with the pre-modifications, primary

assignment / operation of the statement, and then post-modifications happening in that order.

As an assignment is a single instruction that ESBMC atomically executes, some of the concur-

rent behaviours permitted by C are not visible in ESBMC, for example a variable increment

such as x = x + 1; will never have an interleaving between the evaluation of x + 1 and

the assignment to x. This does not model the real-world problem of another thread assigning

x between the expression evaluation and the assignment. However, the command line option

--data-races-check preprocesses the programs so that each instruction has at most one

access to shared program state.

5.1 Evaluating optimisations

To determine how effective an optimisation is, we must evaluate it against benchmarks that pro-

vide adequate coverage of the different inputs that the optimisation should handle, and determine

what kind of performance improvement it yields. In the context of this chapter, there are two

metrics that are relevant:

1. The quantity of time consumed to successfully verify a program.

2. The number of interleavings that are explored to achieve program verification.

While it may seem that time consumed is always proportional to the number of interleavings

explored, this is not always true. Some of the optimisations in this chapter result in an overhead
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on state exploration that is proportional to other factors in the program under test. For example,

the overhead of state hashing scales with the number of variables in the program. Such factors

may guide the selection of optimisations to apply during program verification.

5.1.1 Benchmark selection

Constructing a well rounded and representative set of benchmarks to evaluate optimisations is

difficult. The most serious challenge is that concurrent programs are difficult to characterise.

Concurrent C programs have very few operations unique to concurrency—as this thesis focuses

on concurrent C software, thread communication via channels is not considered. Aside from

the creation and termination of threads, all threads behave as individual sequential programs

that have some variables shared between them, making concurrent behaviours dependant on

program variables only.

Considering the concurrent operations above, I will measure a program by the number of threads

that exist within it, which is potentially unbounded if the program can feature an unbounded loop

that creates threads. Additionally I will measure the number of variables that are shared between

threads in the program. The set of benchmarks picked should have a reasonable distribution of

threads and variables.

I would wish to measure the number of instructions / expressions that access such shared vari-

ables, but measuring this amounts to a model checking problem in itself.

The actual algorithms used in the concurrent program are also difficult to characterise. Con-

current behaviours are controlled by the value of the shared variables in the program. There is

however, the matter of synchronisation, which comes in the form of mutual exclusion and con-

dition variables. As covered broadly in Section 2.2.1, concurrent programs sometimes require

exclusive access to a resource, and achieve this by synchronising with other threads on a lock,

which only one thread can hold at a time. Broadening this concept, we can think of synchroni-

sation as being blocks of code in a thread that require certain other threads to be in a particular

state, or in particular blocks of code themselves. The benchmarks we use should have a variety

of such synchronisation behaviours present.

ESBMC itself is restricted to working with concurrent programs that use the pthread [102]

standard API for the creation of threads and synchronisation between them. A set of benchmarks

that features reasonable coverage of the pthread API should exhibit the concurrent operations

mentioned above. ESBMC supports all the most commonly used features of pthread, the

exceptions being read/write locks, thread attributes,1 and the pthread cancel facility.

Turning our attention to finding or designing benchmarks themselves, there has been a lack

of pre-existing test suites in the literature that are suitable for software verification, and many
1Many of which control the operating system scheduler and are thus irrelevant to model checking
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benchmarks published are “toy” programs used to validate research prototypes [31]. The In-

ternational Competition on Software Verification [31, 32, 33] (SV-COMP) has in recent years

attempted to rectify this by collecting benchmarks used by software verification tools, and nor-

malising them so that different tools can be compared across a common set of benchmarks. Of

the 2868 [33] benchmarks, some 81 are part of the Concurrency category, with benchmarks in

the pthread, pthread-ext, and pthread-atomic directories in the SV-COMP reposi-

tory [6].

The concurrency benchmarks in SV-COMP are collected from three sources: from ESBMC [68]

in the pthread directory, from the CProver team [87] in pthread-ext, and Threader [137]

in pthread-atomic. I consider those benchmarks that feature in the 2014 competition. The

benchmarks themselves are described qualitatively below:

• pthread (21 benchmarks): Roughly half the benchmarks have only two threads, but

the rest range from three to fifteen threads. There is an average of three shared variables

between threads, but half of the benchmarks have a large arrays of integer values that

threads modify. Almost all files make use of pthread mutex and pthread join for

synchronisation, however there is only one use of a pthread condvar.

• pthread-ext (45 benchmarks): Almost all of these benchmarks have an infinite loop

generating threads, making the number of threads explored dependant on the unwinding

bound chosen. No pthread synchronisation functions are used.2 Instead, synchroni-

sation primitives are recreated and tested using three or four shared variables and certain

guarantees about atomicity. Various mutual exclusion algorithms are implemented (i.e.

Dekker, Peterson) and a multithreaded heap.

• pthread-atomic (10 benchmarks): Most of these benchmarks take two threads and

implement a mutual exclusion algorithm, some using pthread mutexes. Between

three and seven shared variables are typically used.

The coverage of the pthread API, number of threads present in the benchmarks, and amount

of shared state (ranging from one or two variables to large arrays of shared values) in the SV-

COMP concurrency benchmarks are sufficient to evaluate optimisations for concurrent program

verification, according to the criteria discussed above. There are two shortcomings: firstly that

none of the benchmarks are of a very large size (all save one are less than two hundred lines

long). This, unfortunately, is a matter of necessity, as the state explosion problem ensures that

very large programs cannot be feasibly verified, and thus they do not appear in the verifica-

tion competition. The second shortcoming is that the benchmarks are not necessarily balanced

between different attributes, and so aggregations of performance measurements may mask sub-

classes of problems that are negatively affected. This can be countered by examining the perfor-

mance outliers as well as performance aggregates.
2The only pthread function call made is to create threads, via pthread create
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On the whole, I believe the SV-COMP benchmark suite to be reasonably well rounded. The

primary reason for selection however is that there are no other suites of concurrent benchmarks

that are suitable for verification, large enough, and have a breadth of behaviours. Those that

could be considered already make up part of the SV-COMP benchmark suite.

Six of the benchmarks cannot be parsed by ESBMC; this is due to the Thread Local storage

qualifier, recently introduced in the C11 standard [7], which ESBMC does not yet support.

Rather than modifying the benchmarks, they were instead omitted from the benchmarks used in

this chapter. The list of omitted benchmarks is in Table 5.1. All were in the pthread-ext

directory.

40 barrier vf false.i 41 FreeBSD abd kbd sliced true.i
42 FreeBSD rdma addr sliced true.i 43 NetBSD sysmon power sliced true.i
44 Solaris space map sliced true.i 46 monabsex2 vs true.i

TABLE 5.1: Tests omitted from SV-COMP concurrency benchmark suite due to ESBMCs
inability to parse them

Additionally, seven benchmarks yielded verification times of less than two seconds, no mat-

ter what unwind bound and context bound were given. They are listed in Table 5.2. These

benchmarks only contained two threads and no program nondeterminism—only the order in

which threads are interleaved can vary. As a result, ESBMC’s constant propagation allows it to

find explicit valuations for all variables in the program at all times, and as a result unfeasible

interleavings are statically identified and pruned. Several do not have any loops that contain

accesses to shared variables, meaning that the state space of all interleavings does not grow with

the unwind bound (and is thus finite). Of the two that do (19 time var mutex true.i and 23 lu-

fig2.fixed true.i), the number of interleavings grows roughly linearly with the unwind bound. I

decided to omit all these tests from my experiments too, because while they may benefit from

performance improvements as a result of optimisations, with verification times in the order of

seconds it would be difficult to be confident that any speedup was not the result of timing varia-

tions in the test setup.

18 read write lock true.i 19 time var mutex true.i
23 lu-fig2.fixed true.i bigshot p false.i
bigshot p true.i bigshot s false.i
bigshot s true.i

TABLE 5.2: Tests omitted from SV-COMP concurrency benchmark suite due to extremely
small verification times and limited state space

5.1.2 Test setup

We now consider how the optimisations featured in this chapter will be evaluated. The first and

most significant decision about the execution of these benchmarks is that they will be context

bounded, i.e., there will be a limit enforced on the number of times thread context switches
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will be permitted (see Section 2.2.3). This is necessary because, in initial training runs, even at

very low unwind bounds the majority of the benchmarks had too many thread interleavings to

explore, and used unfeasibly large amounts of time (i.e. hours) to enumerate them all.

Applying a context bound immediately makes the verification incomplete, as we are using a

bounded model checker, however the program unwinding bound already makes the verification

incomplete. The optimisations to be evaluated should not be significantly affected by this, as

context switches will be being explored at all the same points in the program, but less frequently.

Only variable valuations that are only found through a large number of context switches will be

unreachable.

The Software Verification competition defines the environment and conditions under which its

benchmarks are to operate, which are honoured in this evaluation too. For the concurrency

category, the only property to test in the program is the reachability of the program label ERROR.

SV-COMP also enforces a fifteen gigabyte memory limit, and fifteen minute CPU-time limit.

Here, I enforce the memory limit (due to operational constraints), but extend the timeout to be

four hours to give the best chance of the verification completing. I am aiming to measure the

performance impact of optimisations, rather than whether ESBMC can complete verification

within the SV-COMP limitations. More details on the actual test environment are below.

Another deviation from the SV-COMP configuration is that in this evaluation, ESBMC does not

exit when a counterexample is found. Instead, by using the --all-runs option, exploration

continues after a counterexample is found, until all interleavings have been explored. This is

because we are attempting to measure the optimisation’s effect on performance and the number

of interleavings found, rather than finding the quickest path to a counterexample.

The command line used to launch ESBMC on the program under test is:

esbmc --unwind N --memlimit 15g --timeout 4h

--no-unwinding-assertions --no-assertions

--no-bounds-check --no-pointer-check

--no-div-by-zero-check --error-label ERROR

--tuple-sym-flattener --all-runs --context-switch C

-DLDV ERROR=ERROR -Dassert=nope -D Bool=int

--verbosity 0 --quiet

It is followed by the path to the benchmark file, and any options required to enable the optimisa-

tion being tested. The unwind and context bounds selected are explained below. Breaking down

each line,
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1. Set the loop unroll bound to N,3 memory limit, and timeout

2. Disable in-program assertions, and assertions identifying incomplete loop bounds

3. Disable array-bound and pointer violation checks

4. Disable divide-by-zero checks, and make reaching the label ERROR a property violation

5. Configure an internal option, add --all-runs and configure the context bound to C4

6. Preprocessor workarounds to avoid problems with certain SV-COMP benchmarks

7. Reduce the amount of output text produced by ESBMC during its verification run

ESBMC also possesses two mechanisms for exploring multithreaded state space. Interleavings

between threads are always explored explicitly, but the SSA program for each interleaving can

be encoded either to the same SMT formula, or one formula per interleaving (see Section 2.2.2).

Previous research [68] has shown the latter to be the most efficient, and so I use that technique

(the depth first search encoding) throughout this chapter.

The actual test runs are executed on the Iridis 4 supercomputer hosted at the University of

Southampton, a compute cluster of 750 nodes, with 2x 8-core Intel “Sandybridge” processors

and 64GB of memory per node. Each test was given a time limit of 4 hours, and was executed on

a node with three other instances of ESBMC running these tests (the maximum achievable while

allocating 15GB of memory per process). The version of ESBMC used was b62e4ec7,5 and was

compiled with GCC 4.8.2 on a Ubuntu 14.04 machine. Iridis 4 itself runs RedHat Enterprise

Linux 6.3 on compute nodes.

The solver used for all of these tests is Z3 [72]. This is ESBMC’s default solver, and the one

for which ESBMC’s support is most mature and robust. Z3 supports all of the features required

in this chapter (i.e., incremental solving, see Section 5.4.3.1) which many solvers do not. In

addition, Z3 consistently won many categories at the SMT-solver performance competition, for

several years in a row [63]. While Chapter 4 showed that Boolector is generally faster than Z3,

it does not have full support for all SMTLIB2 features, in particular the SMT push and pop

facilities used later in this chapter.

In the analysis I call one execution of ESBMC against a single testfile with a particular bound

configuration a “run”, while “benchmarks” refers to the set of test files that make up the SV-

COMP concurrency benchmarks, including all the test runs in all bound configurations.
3i.e., the number of times to unroll each loop
4i.e., the maximum number of context switches to allow
5A git hash, from which the exact version of ESBMC used can be retrieved



112 Chapter 5 Improving the performance of ESBMC for multi-threaded programs

5.1.3 Interpreting results

In practice, it is difficult to present the results of this chapter in the form of a graph or illustration.

As the benchmarks are diverse, there is no particular unwind bound or context bound where all

the benchmarks successfully complete verification, save at excessively low unwinding bounds.

Additionally, at higher bounds some tests run out of memory and terminate early, making them

incomparable with other tests run with the same bound configuration. I have tested all the

benchmarks with a range of unwind and context switch bounds, from one to five loop unwinds

and one to seven context switches permitted, but here I present three subsets of that data.

Firstly, for each benchmark I take the unwind and context bound configuration that, when using

ESBMC without optimisation, leads to the longest running verification that successfully com-

pletes. These are shown in Table B.1. Being the longest run for each benchmark, any improve-

ment (or penalty) of the optimisations examined in this chapter should have the most impact, of

the available runs. These are presented as tables ordered by performance improvement and then

benchmark name, to ease comparison.

Secondly I examine the set of runs that complete verification when optimised but either crash

or time out in the unoptimised version of ESBMC, and vice versa. These are referred to as

newly-succeeding and newly-failing (as a result of the optimisation) respectively. Finally, the

set of all run configurations where both the optimised and unoptimised version of ESBMC

complete verification (the “commonly successful” set) is examined for any statistical oddities

over all the successful runs. This should identify any outliers in the performance data that may

be significant.

Any truly successful optimisation should cause a large number of test runs that previously timed

out or exhausted memory to successfully verify, and not cause any test runs to exhaust their re-

sources where they would not have without the optimisation. Moving the boundary of what can

and cannot be verified is one of the ultimate aims of these optimisations. It is also possible for

optimisations to increase ESBMCs performance when solving certain problems but not others.

Such optimisations can still be useful for a subset of verification problems.

The tables of results for this chapter can be found in Appendix B.

5.2 Symbolic state hashing

State hashing has already been described in Section 2.2.3.2, in the context of explicit state model

checkers. To recap, the approach is to compute a checksum or summary of a state that has been

explored, and then index the set of explored state checksums. Given any state, we can summarise

it and then efficiently look up whether it has been explored before along a different path, and

if so the current path need not be explored. Within model checkers such as SPIN, the use of a
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summary or hash eliminates the need to perform expensive state comparisons or compression,

and makes the check for explored-states a task with O(1) complexity.

This optimisation can also be useful in symbolic bounded model checking of concurrent pro-

grams. If, in ESBMC, we reach a state where a context switch may be taken (referred to here

as a “node”), and all shared and thread-local variables and program counters are the same as an-

other explored node, then only one such identical node needs to be explored, as the reachability

subtrees of identical nodes will be the same. As an example, consider a simple multithreaded

C program shown in Figure 5.1 and its corresponding reachability tree shown in Figure 5.2.

The reachability tree consists of the nodes ν0 to ν16, where each node is defined as a tuple

ν = (Ai, Ci, si, 〈lji , G
j
i 〉nj=1)i for a given time step i. Here, Ai represents the currently active

thread, Ci the context switch number, and si the current (global and local) state. Further, for

each of the n threads, lji represents the current program counter of thread j and Gj
i represents

the control flow guards accumulated in thread j along the path from lj0 to lji (although these are

not shown in Figure 5.2). Notice that the transitions originating from node ν1 as those originat-

ing from ν7, produce the same program states. When we explore the node ν7, we can simply

eliminate the transitions that originate from it—provided that we realise that we have already

explored another identical node.

Storing the symbolic state of the program is an impractical task. The valuation of variables in

the program can be ranges of values, constrained by the entire set of past assignments and paths

taken in the program, thus requiring the whole history of an execution to be stored. Comparing

two symbolic states is expensive for the same reasons. Thus, maintaining a set of hashes of

the explored symbolic states at nodes would be a much more efficient way of identifying and

removing duplicate states.

1 #include <pthread.h>
2 int x=0, y=0;
3 void t1(void* arg) { x++; }
4 void t2(void* arg) { x++; }
5 void t3(void* arg) { y++; }
6 int main(void) {
7 pthread_t id1, id2, id3;
8 pthread_create(&id1, NULL, t1, NULL);
9 pthread_create(&id2, NULL, t2, NULL);

10 pthread_create(&id3, NULL, t3, NULL);
11 return 0;
12 }

FIGURE 5.1: A simple multi-threaded C program.

5.2.1 Hashing symbolic states

State hashing is not simple to achieve with symbolic model checking, again due to the fact

that variable valuations are defined by the history of assignments and constraints in the SSA

program (Section 2.4). To counter this, we compute a hash for each program variable’s value,
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ν0 : t0,0,x=0,y=0

(L3, L6, L9)

ν1 : t1,1,x=1,y=0

(L5, L6,L9)

ν2 : t2,2,x=2,y=0

(L5, L8, L9)

ν5 : t3,2,x=1,y=1

(L5, L6, L11)

ν7: t2,1,x=1,y=0

(L3, L8,L9)

ν8 : t1,2,x=2,y=0

(L5, L8, L9)

ν10 : t3,2,x=1,y=1

(L3, L8, L11)

ν12: t3,1,x=0,y=1

(L3, L6,L11)

ν13: t1,2,x=1,y=1

(L5, L6, L11)

ν15: t2,2,x=1,y=1

(L3, L8, L11)

ν3: t3,3,x=2,y=1

(L5, L8, L11)
ν6 : t2,3,x=2,y=1

(L5, L8, L11)

ν9: t3,3,x=2,y=1

(L5, L8, L11)

ν11: t2,3,x=2,y=1

(L5, L8, L11)
ν14: t3,3,x=2,y=1

(L5, L8, L11)

ν16: t1,3,x=2,y=1

(L5, L8, L11)

FIGURE 5.2: Reachability tree for the program in Figure 5.1. Dashed edges represent transi-
tions that can be eliminated by the state hashing technique.

and include the hash value in new assignments, effectively making each hash depend on variable

history. These variable hashes are then combined to make a node-level hash that represents a

particular RT node, resulting in a two-level hashing scheme.

The node-level hash is created by taking the variable-level hashes of all variables in the current

node and concatenating them, together with the program counter values of all existing threads,

in a consistent order into a single data vector. This vector is then fed to a hashing function.

Variable-level hashes are more complex. For each assignment encountered in the RT exploration

we calculate a hash of the right hand side expression and record it against the left hand side

variable name. This hash is created by serialising each operator and value in the expression to a

data representation (i.e., a series of bytes) into a vector, which is then hashed.

For example, Figure 5.1 contains several assignments to the global variable x using the ++ op-

erator (converted to an addition and assignment internally). ESBMC automatically performs

constant propagation and effectively converts the example to an explicit state check (i.e., none

of the variables in this program have an indeterminate value at any time). We represent the

first serialised increment expression as the text: “(+,(constant(0)),(constant(1)))” This demon-

strates one of the simplest encodings of data possible with this method. Any set of operations

on constant values can also be expressed in this manner. Such expressions are, however, not

yet symbolic—to support this we represent nondeterministic values with a prefix and unique

identifier. We also represent the use of indeterminately valued variables in expressions with its

current variable hash. To demonstrate this, reconsider Figure 5.1 and assume x is initialised to a

nondeterministic value. The serialisations representing the two increments of the x variable then

become: “(+,(nondet(1)),(constant(1)))” and “(+,(hash(#1)),(constant(1)))” where #1 represents

the hash value of the x variable, i.e. the hash of the first serialised expression. This causes the

hash value of the x variable to depend on the history (i.e. hash values) of the variables used

to calculate its value. Significantly, no thread specific data is encoded in this representation,
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meaning that the same serialised representation is produced for whichever order of threads in-

crements x. Thus the hash of any variable is a direct product of all nondeterministic inputs,

constant values and operators that represent the constraints on the assignment, without the need

to store the entire history of assignments.

This method is limited, however, by the ordering of assignments—if the original example in

Figure 5.1 had instead a thread that increased the x variable by 2, and another that increased x by

3, then at the end of execution the variable hash of x would be different depending on the thread

ordering, even though x ends up with the same value no matter what order of interleavings occur.

This also affects arrays (including the heap, which is modelled as an array) and unions. So, only

exact symmetry between thread interleavings is identified and eliminated by this approach.

5.2.2 Selection of hash function

As hashing is a lossy abstraction of a node, we risk computing identical hashes for two distinct

nodes. Should this occur, one node will be successfully explored and its hash stored; and when

the other is explored we will discover its hash in the visited states set, and incorrectly assume

it has already been visited. This would cause an unexplored portion of the state space to be

discarded.

The metrics that characterise a hash function are its output bitwidth, its performance when hash-

ing data, and the likelihood of producing a collision. The first two factors tend to trade against

the last: wider and slower hashes are less likely to result in a collision. However they also

consume more resources during verification (memory and time).

For our previous work [125] we chose SHA256 [8] hashes due to its certification for use in

cryptographic applications, aspects that assure us the likelihood of collisions is extremely low.

It does consume more resources than other hash functions we could have picked, but we decided

to act as cautiously as possible.

5.2.3 Experimental Evaluation

Our initial work with state hashing was in the context of Section 3.1, where an LTL monitor

thread was being interleaved with a program under test, and a performance optimisation became

necessary. The evaluation (Section 3.1.3) showed that performance was improved in all test

runs, with a median reduction in verification time of 56%, the maximum 80% and minimum

13%. The exact results and timings are in Table 3.1 on page 59. This would suggest that

state hashing is a useful optimisation when verifying concurrent software. However, we must

also evaluate state hashing on our chosen suite of benchmarks, using the procedure described

in Section 5.1, running ESBMC on each benchmark with a range of context bounds, with and

without state hashing.
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The performance impact on the longest running test runs is shown in Tables B.2 and B.3. It is

immediately apparent that significant improvements in performance have been made, with 32

of the runs having their runtime reduced to less than 10% of the runtime of the corresponding

unoptimised test.6 The mean performance change was a reduction in time consumed by two

thirds, the median reduction being a 95% reduction in time consumed. Not all the runs showed

improvement however, with three runs having marginally increased runtimes.

Examining the newly-succeeding and newly-failing tests, there are no runs where the unop-

timised version of ESBMC completes verification but the state hashing version does not. In

comparison, 153 state hashing runs successfully complete where the unoptimised version either

runs out of time or crashes. These 153 runs are spread across 42 different test files, coming

roughly equally from all directories in the SV-COMP suite.

The set of commonly successful test runs total 1973. Of these, 848 runs show no time difference

caused by the optimisation (typically those runs where the bounds are so low that exploration

takes only a few seconds). 890 runs complete in a smaller amount of time with state hashing,

while 235 take longer. Of those runs where time increases, the mean increase is only 14 seconds,

median 1 second, with only a single run increasing runtime by more than 100 seconds. Of those

where state hashing reduced time consumption, the mean speedup was 271 seconds, median

nine, with 57 runs improving by more than a thousand seconds, and 222 by more than 100 sec-

onds. Additionally, only fifteen benchmarks had runs where the performance reduced by more

than ten seconds, while 64 of the benchmarks had at least one run that increased performance

by ten seconds.7

This is strong evidence that state hashing is an effective optimisation for exploring the state space

of concurrent programs, as the majority of tests receive a significant performance improvement,

and the effect on those that do not is small. Additionally, the increased number of runs that

complete verification with state hashing is an immediate and significant improvement. The

improvements are not across the whole benchmark suite, and while the actual performance gains

depend on the symmetry encountered in the benchmark under test, we have seen that a majority

of the benchmarks benefit from the optimisation.

5.3 Monotonic partial order reduction

As described in Section 2.2.3.1, partial order reduction is the process of classifying transitions

within a multithreaded program that are independent of or dependant on transitions in other

threads, in order to determine whether pairs of interleavings always compute the same state.

Identifying such relations allows us to discard portions of the reachability tree as duplicated.

The difficult task in this approach is the classification of transitions.
6An elapsed time of zero seconds indicates that ESBMC completed in less than one second; times have not been

rounded up
7There is some overlap in these figures, which is due to low context bounds not allowing sufficient state space

exploration to let state hashing exhibit its effects



Chapter 5 Improving the performance of ESBMC for multi-threaded programs 117

Clearly, using a partial order reduction algorithm to reduce the number of interleavings to ex-

plore would be beneficial to ESBMC. A recent development in POR algorithms is the Monotonic

Partial Order Reduction [106] (MPOR), which Kahlon et al. prove is both sound and optimal,

in that it eliminates all redundant interleavings without missing any behaviours that can be ex-

hibited by the program. They then demonstrate a worked example based on the classic dining

philosophers problem, manually encoding it to SMT with and without the MPOR algorithm, and

evaluate its performance. While eliminating all such interleavings would constitute a substantial

improvement in any multithreaded model checking algorithm, it remains to be seen whether the

overhead of calculating the POR algorithm outweighs the savings from reducing the number of

interleavings explored.

5.3.1 The MPOR algorithm

Briefly, we cover the algorithm that calculates this partial order reduction. We follow the syntax

from Section 2.2.3.1 and additionally the syntax described by Kalhon et al. [106], by letting

t1 <x t2 (where t1, t2 ∈ T ) denote a path through program x where transition t1 is taken before

t2. The function tid(ti) evaluates to the thread identifier of the thread executing the transition

ti.

We assume that some underlying dependence / independence relation between transitions exists.

The exact meaning is beyond the scope of the algorithm itself, but an example would be two

transitions where one reads and the other writes the same piece of data—the order in which they

are executed can affect the program state, making the program dependant on their ordering. This

independence relation obeys the properties explained in Section 2.2.3.1. Using Kalhon’s syntax,

the relation means that, should two transitions t1 and t2 be dependant, then we must explore

both the interleaving t1 < t2 and t2 < t1 to discover all possible states. In all the examples

below, we consider systems with some n threads, each with one enabled transition named tx,

where x is the thread identifier.

MPOR defines an order in which transitions are to be executed, and rules for when transitions

may be executed outside of that order. Initially, transitions are only scheduled to run in the order

of their thread ID numbers. For example, were we to have four threads, then we would only

execute the transitions in the order of their thread IDs, i.e. 1, 2, 3, 4. No other interleavings

would be explored.

When a dependency relation exists between a pair of transitions, MPOR allows the pair to swap

their ordering. In these circumstances, however, there may still be a number of other transi-

tions that can be executed independently. The thread ID ordering is still applied to all other

transitions, to ensure that no spurious interleavings are then executed. Thus, were we to have

four threads, with threads two and three having dependant transitions enabled, and one and four

being independent, then we would explore the interleavings:

• t1 < t2 < t3 < t4
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• t1 < t3 < t2 < t4

Kalhon also shows that dependency relations can exist between two transitions that do not have

an explicit dependency, caused by a common intermediate dependency relation. For example

taking three threads, consider the case where t1 depends on t2, and t2 depends on t3. Clearly,

we must explore cases where each dependant pair of transitions are executed outside of their

thread ID order, but we must also explore the interleaving t3 < t2 < t1 as it could lead to a

different state too. This circumstance is characterised by observing that two transitions between

which there exists a chain of transitions which are pairwise dependant must also be dependant,

and thus must be scheduled out of the usual order.

Finally, Kalhon identifies a pathological scheduling case that is impossible to schedule using

the above approach. Consider four threads in which t1 and t4 are dependant, and t2 and t3
dependant. Here, we must explore the out of order interleavings of t1 and t4. However, under

the ordering rules described above, this means that the prefix t4 < t1 is explored, after which

we are unable to schedule either t2 or t3. The independent relation rule says that they must be

scheduled both after t1 but before t4, which is impossible. To avoid this case, Kalhon weakens

the scheduling constraints so that if we cannot produce an interleaving honouring the thread ID

order, we restart the scheduling order after the already scheduled portion of transitions, starting

from the lowest available thread ID. In the example given, this leads to the interleavings:

• t1 < t2 < t3 < t4

• t1 < t3 < t2 < t4

• t4 < t1 < t2 < t3

• t4 < t1 < t3 < t2

Which covers all discoverable behaviours. These transition scheduling rules are formalised into

two definitions by Kalhon et al. [106], which I quote here:

Definition 5.1. Dependency Chain Let t and t′ be transitions executed along a computation x

such that t <x t
′. A dependency chain along x starting at t is a (sub-)sequence of transitions

tri0 , ..., trik executed along x, where (a) i0 < i1 < ... < ik, (b) for each j ∈ [0..k − 1], trij is

dependent with trij+1 , and (c) there does not exist a transition executed along x between trij
and trij+1 that is dependent with trij . A dependency chain along path x is denoted tr →x tr

′.

Definition 5.2. Quasi-Monotonic Computation A computation x is said to be quasi-monotonic

if and only if for each pair of transitions tr and tr′ such that tr′ <x tr we have tid(tr′) >

tid(tr) only if either (i) tr′ →x tr, or (ii) there exists a transition tr′′ such that tid(tr′′) <

tid(tr), tr′ →x tr
′′ and tr′ <x tr

′′ <x tr
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5.3.2 Implementation within ESBMC

Unfortunately the MPOR approach itself is not directly applicable to ESBMC. States and tran-

sitions in Kripke structures are finite and well defined, however as bounded model checking

deals with potentially infinite state systems it does not enumerate all possible states, and instead

repeatedly executes the transition relation to reach new states. Due to pointer indirection, it is

not possible to know what variables are accessed by some transitions, meaning we are unable to

identify statically what dependant transitions exist in a program.

While ESBMC encodes the logic in the program under test symbolically, the scheduling of

threads occurs explicitly, creating one symbolic program formula per unique thread schedule.

This is in contrast to Kalhon’s experiments [106], where the ordering of transitions in a model

are chosen by the solver, and constrained to honour the MPOR algorithm by the formula. In

this respect, ESBMC has more in common with explicit state model checkers when performing

partial order reductions (Section 2.2.3.1) than purely symbolic model checkers.

In addition, ESBMCs default mode of multithreaded operation does not aid the analysis of

transitions. Rather than considering whether to take a context switch after each statement of

the program, consideration only occurs after a thread accesses shared state or a synchronisation

primitive. This method constitutes a crude partial order reduction in itself. It means, however,

that when ESBMC begins executing a thread it does not know in advance when it will stop and

consider context switching. This is incompatible with MPOR, as we must know what dependant

transitions are available in advance, and then decide how to schedule them.

Given these obstacles, when implementing MPOR within ESBMC, I execute every transition

that is available within ESBMC (that is, a sequence of statements accessing thread local data, up

to a global variable access were we might context switch) from each state discovered, and then

retrospectively analyse whether or not the run just taken would have been permitted by the rules

governing MPOR. If it would have been permitted, then exploration continues as normal. If not,

the interleaving is abandoned, we backtrack to the point where the previous context switch was

taken, and a new path is taken. This has the property that, while un-necessary transitions are

explored, they do not contribute to the state explosion problem, as the reachability tree from the

un-necessary transition is not explored. In the worst case, where all running threads are entirely

independent (meaning MPOR only allows a single ordering of all transitions), the number of un-

necessary transitions taken are the number of threads minus one, times the number of statements

where a context switch may occur. This grows linearly with the number of interleaving points

and threads, rather than exponentially.

Within ESBMC, the optimisation requires the collection of certain pieces of data to calculate the

dependency relations between the thread transitions taken. In the context of ANSI-C software,

we say that two thread transitions are dependant if they either both write to the same shared

variable, or if one writes and the other thread reads the same shared variable. The case of

both threads reading a shared variable cannot lead to a different state, and thus both threads are
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independent. Synchronisation primitives within ESBMC are modelled as normal C operations

on shared variables, and thus do not require special consideration. During the execution of

a transition, the set of shared variables accessed (and the kind of access which occurred) is

stored. Later, when a context switch is considered, the per-thread sets of accessed variables

are compared. If a dependant pair of reads/writes is discovered between two threads, then the

threads are marked as depending on each other in this particular state. This ability to classify

whether the actions of threads are dependant or independent allows us to evaluate the MPOR

scheduling rules.

5.3.3 Evaluation

As with state hashing, the MPOR optimisation was applied to the SV-COMP’14 benchmark

suite in the manner described above. The longest running test results are shown in Tables B.4

and B.5. Most strikingly, all the longest-running runs have a performance improvement, the

smallest improvement being a reduction in time consumed of one third. The mean reduction

in performance is by 90% of the original amount of time consumed, an order of magnitudes

improvement, with a median reduction of 88%.

MPOR does not result in any newly-failing runs, and a total of 295 test runs are newly succeed-

ing.

Across all the 1973 commonly successful runs, 794 showed no change in execution time,

1057 took less time to complete when the MPOR optimisation was enabled, and just 122

tests increased their time consumption. The greatest speedup was by 10636 seconds—the best

48 ticket lock low contention vs true.i8 with unwind bound 2 and context bound 6 produced

1.35 million interleavings when run without optimisation in 10649 seconds, but when MPOR

was enabled, it took just 13 seconds to explore 22,000 interleavings and conclude that it had

explored all the necessary interleavings.

The mean performance improvement over the commonly successful runs was a reduction in time

consumed by 336 seconds, while the median was 6 seconds. 273 of the improved runs showed

performance gains of more than 100 seconds. 79 improved by more than 1000 seconds.

Most impressively however, all the tests that had a reduction in performance as a result of the

MPOR optimisation only consumed at most two seconds more time. The penalty of using

MPOR on this set of benchmarks is thus negligible.

5.3.4 Summary

The monotonic partial order reduction has demonstrated significant performance improvements

over the unoptimised version of ESBMC. Not only is there an order of magnitudes improvement
8The same test was the most improved with state hashing; the significance of this is discussed in Section 5.7
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in time consumption (on average over the longest running tests), but there are no tests where its

use leads to a significant decrease in performance. The cost of using it is therefore negligible.9

The performance improvements are not across the whole set of SV-COMP benchmarks; however

for the subset of tests where a performance improvement was observed, the improvement was

significant. Additional work is required however to ensure that ESBMCs current feature set still

works under this mode of operation.

5.4 Incremental SMT and solver queries

The most recent revision of the SMTLIB logic format [24] (the standardised input language to

SMT solvers) have introduced the concept of an assertion stack, and the ability to push and

pop assertions on and off it. This means that all SMTLIB compliant SMT solvers must have an

internal stack of assertions that the user has applied to the variables in the formula, and that in

the course of interpreting the input file new assertions can be added to or old assertions removed

from this stack. The desired outcome of this approach is to enable assertion retraction and

lemma learning. The former allows one to speculatively add assertions to the formula, evaluate

the result, then return the formula to its original form. The latter is the process whereby the SMT

solver stores facts (in the form of lemmas over the formula variables) that it has determined about

the formula, that may prove useful in future checks of the formula. This enables the solver to use

lemmas determined during previous checks for future checks, optimising the search procedure

and potentially eliminating a large amount of formula state space to be searched. The term for

this technique is “Incremental SMT”, where the formula is built up in stages, and lemmas learnt

about the formula along the way.

This facility is potentially beneficial to the exploration of multithreaded state space by ESBMC.

The existing operation of the SMT solver follows directly from the original implementation

within CBMC: once a SSA program has been produced by symbolic execution, that program

is converted to first order logic and translated to a form acceptable to the solver, after which

it is solved. After solving, the entire formula is discarded. While this is obviously correct for

single threaded exploration, during multithreaded exploration a large number of SSA programs

will be converted, solved, and discarded. Using assertion retraction to build and deconstruct

the formula could allow reduced SMT-conversion overhead, and lemma learning could lead to

swifter verification times. The default SMT solver in ESBMC, Z3, claims lemma learning as a

feature [72], allowing us to evaluate it’s impact.

One issue of nomenclature arises—in ESBMC, an assertion is a program property that we search

for violations of. However in SMT solvers, an assertion is a constraint on the variables in for-

mula that must hold if the formula is to be satisfiable. As program properties are not immediately

relevant, my use of “assertion” in this section means an assertion in the SMT solver.
9All future releases of ESBMC have MPOR enabled by default



122 Chapter 5 Improving the performance of ESBMC for multi-threaded programs

5.4.1 Encoding SMT during symbolic execution

To make use of incremental SMT during multithreaded state exploration we must identify ways

in which the SMT formula can be re-used between SSA programs, through pushing and popping

assertions into the solver. The most obvious way of using incremental SMT is to retain the

formula produced from one SSA program, identify the common prefix between it and the next

SSA program produced, and retract all the assertions that are not common (i.e., that were specific

to the previous interleaving). Then, place the new assertions from the next SSA program on top

of the remaining formula.

To illustrate this, consider Figure 5.3. The first set of lines represent four different interleavings

of a particular trace when explored normally—all the transitions are encoded, solved, and then

discarded, before we move onto considering the next interleaving. The colours indicate identical

transitions, i.e. transition A is common to all interleavings, while C and D are not. The tree

like structure below represents the formula when using incremental SMT. The first interleaving

produces a formula up to the end of Run 1, after which we backtrack through transition F and

then take a different transition, E, to produce Run 2. The same approach leads to the other

branch of the tree (runs 3 and 4). Observe that transitions A and B are not discarded and so

only need to be encoded once, and any lemmas learnt over the assertions that make up those

transitions will exist for all subsequent paths and thus help optimise them. Transitions C and D

are also present for at least two of the illustrated runs, and lemmas learnt there will optimise a

portion of the explored tree. Clearly, the most optimisation is achieved when as much formula

as possible is preserved for as long as possible, decreasing the amount of formula that must be

encoded and increasing the number of learnt lemmas.

Implementing this requires ESBMC to preserve a single SMT formula throughout state space

exploration, and to retract assertions from the formula to an appropriate point, once the formula

has been checked. The former can be achieved through a number of methods—the SMTLIB

format itself allows input files to be treated as a script, allowing ESBMC to send commands to

the solver and read back results on-the-fly (in the typical UNIX tool style of processes communi-

cating through a stream of characters). Other SMT solvers provide a library and API for solving

in-process. The latter feature, backtracking, requires ESBMC to issue SMTLIB push and pop

commands; pushing before encoding assertions to the solver, and popping when backtracking.

The exact points to “push” (mark a point on the assertion stack that a future “pop” will retract

assertions up to) are those points in execution where context switches are taken. This means

individual transitions can be popped out of the SMT formula as a whole.

This optimisation is enabled on the ESBMC command line through the option “–smt-during-

symex”, and is referred to from here as the incremental solving optimisation.

One unforeseen outcome is that the “slicing” optimisation inherited from CBMC becomes un-

viable. Slicing occurs by taking a completed SSA program and walking backwards through the

program, marking variables that properties depend upon. Once completed, any variables that
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FIGURE 5.3: Example representation of the SSA programs making up a multithreaded explo-
ration. The first set of runs illustrate the programs produced during normal exploration, while

the second shows the tree-structure produced by incremental SMT

properties do not depend upon are eliminated. In incremental solving, however, we do not know

what properties may be checked in a future interleaving, and so we must encode all assignments

to the formula when performing incremental SMT.

5.4.2 Eliminating unfeasible paths

By keeping an SMT formula for the current program path available throughout state exploration,

we create opportunities for further optimisations. We can reduce the number of interleavings we

must explore by eliminating any unviable paths, i.e. paths that pass through an unreachable

state. The reachability subtree of any unreachable state is also unreachable. ESBMC already

eliminates some unreachable states by statically determining whether branch guards can be true

or false, however this does not always succeed. With the SMT formula available however, we

can test whether a state is unreachable during exploration.

At any point in the symbolic execution of the program, the condition for the current path being

viable or not is represented by the execution guard, the combination of the guards on all the

branches taken to reach this point. We can query the SMT solver and determine whether this

execution guard can ever be true. If it can be true, then we must continue exploration of the

current path. However, if the guard can never be true, then we have discovered an unreachable

state, and can immediately backtrack to a reachable one, avoiding the exploration of additional

interleavings.
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1 void *thread1(int lockorder) {
2 pthread_mutext_t *lock1, *lock2;
3 lock1 = (lockorder == 0) ? &alpha_lock : &beta_lock;
4 lock2 = (lock1 == &alpha_lock) ? &beta_lock : &alpha_lock;
5
6 pthread_mutex_lock(lock1);
7 /* Perform some unknown operation */
8 pthread_mutex_unlock(lock1);
9 }

1 void *thread2(int lockorder) {
2 pthread_mutext_t *lock1, *lock2;
3 lock1 = (lockorder == 0) ? &alpha_lock : &beta_lock;
4 lock2 = (lock1 == &alpha_lock) ? &beta_lock : &alpha_lock;
5
6 pthread_mutex_lock(lock2);
7 /* Perform some unknown operation */
8 pthread_mutex_unlock(lock2);
9 }

FIGURE 5.4: Program with nondeterministic locking of a lock

To demonstrate the usefulness of this, consider the example in Figure 5.4. Here, the first thread

nondeterministically locks a shared mutex, according to the condition lockorder. The sec-

ond thread behaves in the same manner, deciding which lock to use according to the function

argument. Should that argument be nondeterministic (i.e. sourced from a program input or

explicit nondeterministic variable), ESBMC is unable to determine statically which of the two

locks is being locked. As a result, numerous interleavings are produced and explored, including

those where both threads have locked the same lock (an unfeasible state), to cover all possible

behaviours.

Within ESBMC, I have implemented this by querying the solver whenever we reach a context

switch point. An assertion that the execution guard is true is encoded, and the formula checked

to see if it is satisfiable. If it is not, we know that the current path is not viable, and we can cease

exploration and backtrack.

The idea of querying a theorem solver to guide the exploration of a program is not new. Existing

symbolic execution tools [48] and static analysers [161] query solvers to identify unfeasible

paths. I am unaware, however, of any model checkers that implement this approach (although

Günther et al. propose to implement this soon in [89]), or of any tools that apply this approach

to concurrent software verification.

5.4.3 Evaluation

Two potential optimisations were proposed in this section: the first is that by incrementally

encoding the SMT formula during symbolic execution, we can reduce the amount of time that it

takes to verify a state through reduced SMT encoding overhead and learnt lemmas. The second

is that by querying the SMT solver during multithreaded state exploration as to whether the
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current interleaving is feasible, we can identify unfeasible states in the program early and avoid

having to explore all subsequent interleavings from it.

As with the previous optimisations, these were tested against the SV-COMP’14 benchmarks in

the manner described in Section 5.1.

5.4.3.1 Incremental solving

The performance impact on the longest running test runs are shown in Tables B.6 and B.7.

Unfortunately, the optimisation has increased the memory consumption of some of the runs,

leading to 17 of the longest running to crash in out of memory conditions. Additionally, 17

more of the runs exhibit a decrease in performance. Not all the effects are negative—the rest of

the runs show some form of performance increase, although not of the same magnitude as the

previous two optimisations evaluated.

On the newly-failing and newly-succeeding front, results are mixed too. 44 runs newly-fail with

incremental solving (some being those presented in Table B.6), while only 12 newly succeed.

Any tests newly failing as a result of an optimisation is a very bad sign.

Considering the set of commonly successful runs (1929 in total), 805 runs showed no difference

between optimised and unoptimised versions. In 332 runs the optimised version of ESBMC ran

faster than the normal, and in 792 runs it ran slower. This hints at a general case slowdown in

performance. In terms of averages, the runs where the optimised version was slower were slower

by a mean of 33 seconds, a median of 12, whereas those runs that were faster with the optimised

version had an average improvement of 366 seconds, but a median of 1 second improvement.

The maximum improvement was of 7901 seconds (32 pthread5 vs false.i with unwind bound 1

and context bound 7), while the greatest decrease was 1190 seconds (07 rand true.i with unwind

bound 3 and context bound 4).

Given the median performance effect and that the majority of tests run slower with this opti-

misation shows it is not generally useful across the set of benchmarks, in many cases being a

performance hindrance. Curiously, there is a small subset of runs where large performance im-

provements are seen, as shown in Table B.10. Here, the first 35 largest changes in consumed

time over all commonly successful runs are all speedups as a result of the optimisation, and

come to a total of 95122 fewer seconds of time consumed. The 35 runs with the largest change

come from a total of twenty benchmarks. These improvements seem to indicate that there is a

small subset of benchmarks where this optimisation proves useful.

My conclusion is that the incremental solving optimisation can deliver performance improve-

ments in a small number of cases, but that it is unsuccessful as a general optimisation.
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5.4.3.2 Thread guard

The thread guard optimisation requires the incremental solving option to be enabled for it to

operate, and so the results below suffer some of the same performance problems that incremental

solving did. I chose not to try and separate the results though, as there is no way to separate the

optimisations.

There are still 14 newly-failing runs (i.e. those where the unoptimised version of ESBMC suc-

ceeds but the thread-guard optimisation fails), although 61 tests newly succeed. Again, this is

not a good result.

Tables B.8 and B.9 show the performance changes on the longest running runs as a result of the

thread guard optimisation. We see a number of tests newly failing (crashing) although this is

fewer than with just incremental solving (5 newly failing vs 17). More importantly, however,

more tests show a performance improvement, with 51 out of 67 showing a reduction in time

elapsed, with a broad range of percentage changes.

Turning to the commonly successful runs, a total of 1959 runs produced results in both versions

of ESBMC. 730 showed no change in time, 661 speed up with the thread-guard optimisation,

and 568 slowed down. The unoptimised version of ESBMC consumed 358900 seconds across

these runs, while the thread-guard optimised version consumed 111632 seconds. Those runs

that sped up contributed 266882 fewer seconds of time consumption, while those that slowed

down contributed an additional 19614 seconds.

The largest speedup was of 12230 seconds, 85% of the time allocation the test was permitted.

The largest slowdown was of 1162 seconds. On average, the mean performance increase was

403 seconds on tests that sped up, with a median of 34 seconds. Tests that slowed down did so

by a mean of 34 seconds, a median of 2 seconds.

Of these runs, 185 speed up more than 100 seconds across 45 tests, while 44 slowed down more

than 100 seconds across 15 tests.

These results show that, versus an unoptimised version of ESBMC, the thread guard optimisa-

tion can deliver higher performance; however the performance gain varies significantly, depend-

ing on the nature of the test. Taking for example, the singleton false.i benchmark, more

than an order of magnitude speedup is observed (12562 seconds reduced to 332 seconds) with

this optimisation.10 The test itself generates four threads, each performing a trivial assignment;

they are then all pthread join’d11. The implementation of this API call simply encodes an

assumption that the designated thread has completed, and continues execution. As a result, it

is likely that a large number of the interleavings explored could feature a false assumption that

another thread has terminated, which would be identified by the thread-guard optimisation and

pruned. This is backed up by the interleaving numbers for that test: with an unwind bound of 1
10In this case, the incremental SMT optimisation contributes some 1500 seconds of the performance improvement
11A function that blocks execution until a specified thread terminates
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FIGURE 5.5: Cumulative sum of run time, ordered by runtime, for all optimisations discussed
in this chapter versus unoptimised ESBMC

and context switch bound of 5, 1,253,886 interleavings are explored in the unoptimised version

of ESBMC, and only 299,175 when the thread-guard optimisation is enabled.

My conclusion is that certain benchmarks can have a significant performance improvement as

a result of this optimisation, but that it should not be considered a general purpose solution.

There is a small (six) set of tests where the thread guard optimisation improves performance by

more than both the state hashing and MPOR optimisations, most notably singleton false.i and

04 incdec cas true.i, which should not be overlooked.

5.5 Discussion

Of the four optimisations examined, we have seen that the MPOR algorithm is the most effective

at increasing the performance of model checking of concurrent software across the benchmark

suite, delivering an order of magnitude improvement in speed without seriously reducing the

performance of any run. This is illustrated in Figure 5.5, where I compare the performance

of the different optimisations explored in this chapter. The y axis is the cumulative amount of

verification time when runs are ordered by verification time. The exponential curves are thus a

product of the graph format; what is of interest is the rate of increase and heights.
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FIGURE 5.6: Cumulative sum of run time, ordered by runtime, for the MPOR and state hashing
optimisations, versus the combination of the two

FIGURE 5.7: Cumulative sum of run time, ordered by runtime, between the MPOR optimisa-
tion and a combination of MPOR and thread guard optimisations
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Observing the curve of the MPOR optimisation (stars) versus unoptimised ESBMC (circles), we

see that the total cumulative verification time up to the 50th smallest test is negligible, compared

to roughly 70,000 seconds of verification time without optimisation. After this point the MPOR

optimisation begins accumulating verification time faster, but ends with a total of 20,000 seconds

of verification time, compared to almost ten times as much in unoptimised ESBMC.

A similar progression is observed for state hashing (crosses), although it’s curve begins ascend-

ing earlier and at a much faster rate than MPOR. This shows the performance benefits of state

hashing to be less than those of MPOR, although still an improvement on the unoptimised ver-

sion. As concluded in Section 5.2, state hashing generally leads to a performance improvement,

but can sometimes result in performance decreases for a small number of benchmarks.

Both incremental solving and the thread guard optimisations have incomplete data sets, due to

running out of memory. Note that the thread guard line terminates in the middle of the state

hashing line, five marks from the rightmost mark. It would appear that incremental solving is

not as effective as the other optimisations, and that the thread guard optimisation is almost as

effective as state hashing, however it would be wrong to draw any firm conclusions without the

final data points.

I now examine the effect of combining certain optimisations. The state space pruned by each

optimisation (save incremental solving, which sought to improve the performance of exploring

individual states) does overlap in some ways. State hashing will eliminate symmetric inter-

leavings where different threads assign the same values to variables after a context switch, and

likewise the MPOR algorithm will eliminate those interleavings where the same assignments

happen, as long as there is no inter-thread dependency. The two do not optimise out the same

set of states though; state hashing cannot eliminate identical states that are not exactly sym-

metric, and MPOR cannot eliminate interleavings where there is a cross-thread dependency but

the value of the read or write does not actually change the state. This can be seen best in the

run that both optimisations improved the most, 48 ticket lock low contention vs true.i with un-

wind bound 2 and context bound 6. From a total of 1.3 million interleavings produced in the

unoptimised version, state hashing reduced this to 71,000 while MPOR produced only 21,000.

Figure 5.6 presents the cumulative time consumed by state hashing and MPOR optimisations

over the benchmarks, and the effect on performance of enabling both optimisations. With both

enabled, ESBMC performs marginally better than either of the optimisations by themselves. The

difference is not large, but it does demonstrate that the two optimisations are affecting different

sets of interleavings.

The thread guard optimisation does not relate to either state hashing or MPOR, as it checks the

in-program property of whether the path being taken is feasible. These experiments have dis-

covered, however, that the performance to be gained from this optimisation is not as significant

as the others—there are fewer newly-feasible test runs, and some test runs do not complete ver-

ification where they normally would. To better understand the performance of the thread guard

optimisation, Figure 5.7 presents the cumulative time consumed over the benchmarks by MPOR,
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and MPOR with the thread guard optimisation. By using the MPOR optimisation to reduce the

number of states to be explored, we ensure that all of the runs using the thread guard optimisa-

tion succeed, meaning we can fully compare the performance of using it. For the majority of the

tests the thread-guard optimisation results in higher verification times, however towards the end

of the series the lines cross, indicating that for some runs the thread guard optimisation yields

a lower verification time, to the extent that across the whole set of benchmarks, thread guard

delivers a slight performance improvement. This backs up the conclusion of Section 5.4.3.2,

that the optimisation is effective for some verification problems (but not others).

Testing ESBMC against the benchmarks again, with all the explored optimisations enabled, 332

additional runs complete their verification within the resource limits given versus an unoptimised

version, versus a single test (07 rand true.i) that no longer finishes successfully. This is a useful

outcome from these optimisations.

5.6 Related work

Concurrent software verification is a mature field with a large variety of research currently taking

place. I am not aware of any symbolic model checker, or indeed software model checker, that

makes use of state hashing aside from ESBMC.

The closest tools to ESBMC that use partial order reductions are CBMC [53] and JPF [157].

CBMC encodes all thread executions into one SAT formula that directs the solver to re-order

their executions to explore the state space, but also adds partial order constraints to avoid redun-

dant interleavings being considered [11]. JPF is an explicit state model checker, and uses partial

order techniques to identify which states it should backtrack to during execution, depending on

the interactions between threads [133]. I am not aware of any tools that apply the monotonic

partial order reduction [106] to software model checking. Noonan et al. provide another optimal

POR [10] that they apply to the verification of Erlang programs, and dismiss Kalhon et al. as not

being applicable to stateless model checking, where state sequences are enumerated during ex-

ploration. The speculative executions and their retrospective analysis described in Section 5.3.2

provides a bridge between Kalhons work and stateless model checking.

Many other tools use partial order reductions in settings other than model checking, for example

in test generation tools [105], or in simulation of other concurrent systems such as SystemC

simulation [50].

Another branch of concurrent model checking is where, rather than explicitly exploring all pos-

sible interleavings in the program under test, the program is instead translated into a series of

transition relations in an SMT solver and the solver is instructed to find an ordering of them

that satisfies a condition (Much like the STORM encoding in Section 2.2.2). CBMC takes such

an approach [12], encoding the bounded runs of each thread in a program to a SAT formula,

then directing the solver to interleave them. CSeq [101] takes a different approach and reduces
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concurrent programs to a single threaded program, with a driving loop that nondeterministically

executes portions of threads, allowing the solver to decide which portion of a thread is exe-

cuted, when. All of these tools have shown significantly better performance then ESBMC in

many benchmarks. I believe that ESBMCs explicit exploration of interleavings may still have

its place, however, as it is easily distributed across a compute cluster and will consistently result

in smaller SMT formulae.

5.7 Conclusions and future work

This chapter has explored four potential optimisations for reducing the amount time required to

perform verification of concurrent software in ESBMC. Applying each benchmark individually

to the SV-COMP’14 benchmark suite for concurrent programs, I have shown that both state

hashing and monotonic partial order reduction lead to more completed test runs within the given

time and memory bounds (while not making additional runs fail), and that across the range of

benchmarks within the suite, their benefit outweighs the impact on tests that show a reduction

in performance. The monotonic partial order reduction is clearly the better of the two, having a

negligible performance penalty and delivering significant improvements.

I have also shown that there are few benefits to be had from encoding the SMT formula during

state exploration, with the incremental solving optimisation. However there is also evidence that

the optimisation enabled by it, of testing the feasibility of an interleaving during exploration (the

“thread guard” optimisation), has some performance benefits too.

Overall, I have evaluated these optimisations against the chosen benchmark suite and discovered

the different strengths of the optimisations, which have not been applied to symbolic software

model checkers before, to the best of my knowledge.

For future work, it is likely that some adjustment of how frequently the thread-guard optimisa-

tion is evaluated may yield better results. Solving a small set of interleavings at the same time

using the same solver context may also lead to a performance improvement, although this is

distinct from the solver-scheduled SMT encodings mentioned above. Finally, the recent stan-

dardisation of C11[7] with a weak memory model opens new doors for software verification,

as memory model optimisations can now be applied to all C11 code. Additionally, it defines

new undefined behaviours (i.e., program properties that can be violated) that may allow model

checkers to reject concurrent behaviour that exhibits races early, rather than having to find a path

to a program property that can be violated as a result.
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Conclusions and future work

This thesis has examined the state of the art in symbolic software model checking for concurrent

programs and checking of LTL formulae over software. The state space explosion problem is

identified as an ever-present limitation on the feasibility of model checking in general, along

with a general lack of LTL model checking techniques for software, although several methods

extract models from software and then verify the model [94, 80].

To address the matter of LTL formulae, we have taken the usual technique of evaluating Büchi

Automata over system states, but have synthesised the model to an ANSI-C implementation and

composed it with the program under test, leading to a symbolic evaluation of the BA. We then

extended the truth domain of LTL to represent the different circumstances that a finite prefix

of an infinite trace may terminate in. We test this approach on a toy concurrent program, a

piece of industrial software, and a suite of synthesised benchmarks and find it to be an effective

approach: with the caveat however, that the unfair scheduling of threads makes the checking of

liveness properties in concurrent programs unfeasible.

Once the performance limitations of our initial approach were addressed, the performance im-

plications of our technique are small. Compared with verifying a reachability property using

BMC, our technique effectively only requires an inlined function to be run whenever certain

global variables are modified. This overhead grows linearly with the number of global variable

modifications in the program, although the logic of the inlined BA must still be explored by the

SMT solver. This means that LTL model checking can now be used anywhere that BMC is used

today. There is still the finite trace limitation, in that certain properties such as true liveness will

never yield a conclusive answer. However an engineer equipped with our property analysis will

still be able to identify behaviours that likely violate the property.

We then turn to the performance of SMT solvers when evaluating the formulae produced by ES-

BMC. We select the most commonly used set of SMT solvers in the field of software verification,

implement support for them in ESBMC, and compare their performance over a benchmark suite.

Boolector is identified as being the fastest of the solvers, in line with expectations. We then iden-

tify two adjustments to ESBMCs SMT encoding that can be made, that both lead to reasonable

133
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improvements in performance as measured by number of tests completing verification. None of

the solvers or improvements amount to an order of magnitudes performance increase, however

this is no surprise as the SAT problem has been shown to be NP-complete, and so will always

remain a difficult task to solve. I have shown however that there are performance enhance-

ments to be made in how the model checking problem is encoded, and that implementing such

optimisations allows us to verify a larger set of benchmarks.

Finally, a number of optimisations are identified to improve the speed of concurrent program

verification, through reducing the number of interleavings to be explored and increasing the

speed at which each interleaving is checked. Each is evaluated on a benchmark suite, and finally

compared, with the monotonic partial order reduction (MPOR) being identified as the most ef-

fective optimisation, which is complimented to some extent by the use of state hashing. The

MPOR optimisation demonstrates on average an order of magnitudes increase in performance

and negligible other performance costs, making it well suited for future concurrent software

verification. The other optimisations examined demonstrate performance improvements but oc-

casionally performance costs on some benchmarks. These optimisations need not be ignored,

however, as they can be made available to engineers as options, and can be assessed as to whether

they are appropriate in particular use cases.

6.1 Main contributions

This thesis contains two main contributions: first and foremost, a technique for model check-

ing LTL properties over bounded symbolic traces of software, which has not previously been

achieved in the literature. This technique has been evaluated over several pieces of software,

including a benchmark suite designed for LTL model checking tools, and has shown to give

correct and informative results for all.

The second contribution is the evaluation of a set of optimisations to tackle the state explosion

problem, both for concurrent software and to improve the normal solving of sequential program

traces. Some of these techniques are completely novel, while others have not been applied to

either symbolic model checking or even software model checking, before. The evaluation has

shown that many of these optimisations are suitable in all available benchmarks, and lead to an

increase in the range of programs that can be feasibly model checked within certain performance

bounds.

6.2 Future work

The technique demonstrated in this thesis for the verification of LTL properties over software

opens the door for substantially more expressive properties to be verified in software. The

actual implications of this can only be explored with an industrial case study, or other evaluation
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of the technique against a real world piece of software, ideally as it is developed. Of particular

interest is the implications of the bounding of inner loops: as discussed in Section 3.4.1 the finite

prefixes we explore are not complete or possibly well defined if loops other than the outermost

are bounded. Embedded software on microcontrollers tends to implement a state machine with

an infinite outer loop, making such applications an appropriate study topic.

It would also be worthwhile to study precisely how constructs in software translate to complex-

ity in SMT formula. Specifically, the ability to quantify the cost of particular expressions or

estimate the additional cost of extending the unwind bound further would help the verification

engineer understand what is feasibly verifiable. There is also scope for such information be-

ing used to either guide abstractions or optimisations of the formula encoding, with a view for

further performance enhancements.

Finally, there are numerous engineering and maintenance tasks to perform within ESBMC that

could lead to better verification in the future. Recent work [140] has extended ESBMC to

support the C++ language, however supporting the entire standard within a single verification

tool is unfeasible. Instead, converting the frontend of ESBMC to use the Clang compiler library

would be a much more sustainable approach, and without loss of precision as clang exports it’s

abstract syntax tree to all library clients.

6.3 Concluding remarks

The work I have contributed here extends the bounds of the properties and programs that can

be verified by model checking tools—however it is no panacea, and there are many further

challenges that the model checking community must face. In particular, the state space explosion

problem is never likely to be truly defeated bar some incredible breakthrough. Instead, the model

checking community must go on proposing and evaluating small improvements to the techniques

already present in the literature, and most importantly sharing their ideas and implementations.

This is the best approach to truly increase the size of program that can be feasibly verified by

automated tools, and will keep the field interesting for years to come.
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Code samples

A.1 Sample monitors

1 char __ESBMC_property___cexpr_0[] = "pressed";

2 bool __cexpr_0_status;

3 char __ESBMC_property___cexpr_1[] = "charge > min";

4 bool __cexpr_1_status;

5
6 typedef enum {T0_init, accept_S2 } ltl2ba_state;

7 ltl2ba_state state = T0_init;

8 unsigned int __visited_states[2];

9 unsigned int __transitions_seen;

10 extern unsigned int __transitions_count;

11
12 void ltl2ba_fsm(bool state_stats) {

13 unsigned int choice;

14 while (1) {

15 choice = nondet_uint();

16 /* Force a context switch */

17 __ESBMC_yield();

18 __ESBMC_atomic_begin();

19 __ESBMC_assume(__transition_count <=

20 __transitions_seen + 1);

21 __transitions_seen = __transition_count;

22 switch(state) {

23 case T0_init:

24 if (choice == 0) {

25 __ESBMC_assume((1));

26 state = T0_init;

27 } else if (choice == 1) {

28 __ESBMC_assume((!__cexpr_1_status &&

29 __cexpr_0_status));

30 state = accept_S2;

31 } else {

32 __ESBMC_assume(0);
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33 }

34 break;

35 case accept_S2:

36 if (choice == 0) {

37 __ESBMC_assume((!__cexpr_1_status));

38 state = accept_S2;

39 } else {

40 __ESBMC_assume(0);

41 }

42 break;

43 }

44 if (state_stats)

45 __visited_states[state]++;

46 __ESBMC_atomic_end();

47 }

48 return;

49 }

50
51 int

52 ltl2ba_thread(int *dummy)

53 {

54
55 ltl2ba_fsm();

56 return 0;

57 }

58 void

59
60 ltl2ba_start_monitor(void)

61 {

62 pthread_t t;

63
64 _ltl2ba_thread_done = 0;

65 _ltl2ba_state = T0_init;

66
67 _ltl2ba_transitions_seen = _ltl2ba_transition_count;

68 pthread_create(&t, NULL, ltl2ba_thread, NULL);

69 __ESBMC_yield();

70
71 return;

72 }

73
74 void

75 ltl2ba_finish_monitor(void)

76 {

77
78 __ESBMC_assume(_ltl2ba_thread_done == 1);

79 ltl2ba_fsm();

80 assert((_ltl2ba_state != accept_S2) && ("LTL property violated"));

81 return;

82 }
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LISTING A.1: Initial C implementation of the Büchi automaton for the formula
!G({pressed} -> F {charge > min}) and associated helper functions.

1 char __ESBMC_property___cexpr_0[] = "pressed";

2 bool __cexpr_0_status;

3 char __ESBMC_property___cexpr_1[] = "charge > min";

4 bool __cexpr_1_status;

5
6 typedef enum {_ltl2ba_state_0,_ltl2ba_state_1} _ltl2ba_state;

7 _ltl2ba_state _ltl2ba_statevar =_ltl2ba_state_0;

8
9 void *ltl2ba_fsm(void *d) {

10 unsigned int choice;

11 while (1) {

12 choice = nondet_uint();

13 __ESBMC_atomic_begin();

14 switch(_ltl2ba_statevar) {

15 case _ltl2ba_state_0:

16 if (choice == 0) {

17 __ESBMC_assume(1);

18 _ltl2ba_statevar = _ltl2ba_state_0;

19 } else if (choice == 1) {

20 __ESBMC_assume(!_ltl2ba_cexpr_1_status &&

21 _ltl2ba_cexpr_0_status);

22 _ltl2ba_statevar = _ltl2ba_state_1;

23 } else {

24 __ESBMC_assume(0);

25 }

26 break;

27 case _ltl2ba_state_1:

28 if (choice == 0) {

29 __ESBMC_assume(!_ltl2ba_cexpr_1_status);

30 _ltl2ba_statevar = _ltl2ba_state_1;

31 } else {

32 __ESBMC_assume(0);

33 }

34 break;

35 }

36 __ESBMC_atomic_end();

37 __ESBMC_switch_from_monitor();

38 }

39 }

40
41 void ltl2ba_start_monitor(void) {

42 pthread_t t;

43 __ESBMC_atomic_begin();

44 pthread_create(&t, NULL, ltl2ba_fsm, NULL);

45 __ESBMC_register_monitor(t);

46 __ESBMC_atomic_end();

47 __ESBMC_switch_to_monitor();
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48 }

49
50 _Bool _ltl2ba_stutter_accept_table[4][2] = {

51 {false,true}, {false,false}, {true,true}, {false,true}

52 };

53
54 _Bool _ltl2ba_good_prefix_excluded_states[2] =

55 { true, true };

56
57 _Bool _ltl2ba_bad_prefix_states[2] =

58 { false, false };

59
60 unsigned int _ltl2ba_sym_to_idx(void) {

61 unsigned int idx = 0;

62 idx |= (_ltl2ba_cexpr_1_status) ? 1 : 0;

63 idx |= (_ltl2ba_cexpr_0_status) ? 2 : 0;

64 return idx;

65 }

66
67 void ltl2ba_finish_monitor(void) {

68 __ESBMC_kill_monitor();

69
70 _Bool in_bad_state =

71 _ltl2ba_bad_prefix_states[_ltl2ba_statevar];

72 __ESBMC_assert(!in_bad_state,"LTL_BAD");

73
74 unsigned int cursym = _ltl2ba_sym_to_idx();

75 _Bool in_accept_state =

76 _ltl2ba_stutter_accept_table[cursym][_ltl2ba_statevar];

77 __ESBMC_assert(!in_accept_state,"LTL_FAILING");

78
79 _Bool not_in_good_prefix =

80 _ltl2ba_good_prefix_excluded_states[_ltl2ba_statevar];

81 __ESBMC_assert(!not_in_good_prefix,"LTL_SUCCEEDING");

82
83 return;

84 }

LISTING A.2: C implementation of the Büchi automaton for the formula
¬G({pressed} =⇒ F{charge > min}).

A.2 Pulse Oximeter source code

This section contains the Pulse Oximeter software used in Chapter 3 for testing the LTL verifi-

cation technique. It was written by my colleague Lucas Cordeiro, who also holds the copyright.

I list here first the original source files using during verification, and then later the test harnesses

and code errors inserted during my evaluation. The Pulse Oximeter was originally verified in

[69].
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The source tree is as follows: Thee first three files in the “apps” directory contains the main event

loop and setup code for embedded environment. The next 13 files, in the “drivers” directory,

contain software to control the peripherals of the microcontroller, including some inline assem-

bly. This assembly was not verified by our approach, but is included here for completeness. The

final two files contain a ringbuffer for storing logged messages, that are communicated out of

the device via a serial link.

Note that throughout the code base, device specific constructs are guarded with “#if TARGET”,

and are replaced with code guarded with “#if VERIFICATION” while verification is in progress.

It is also important to note that this purely because ESBMC does not precisely model the target

device, leading to syntax errors when accessing registers, rather than any more fundamental

limitation.
1 /*********************************************************
2 * File: main.c

3 * Abstract: Implementation of the Main routine

4 * Platform: AT89S8252

5 * Project: Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 /***********************************************
11 * INCLUDE FILES *
12 ************************************************/

13 #include "menu_app.h"

14 #include "../drivers/global.h"

15 #include "../drivers/lcd_driver.h"

16 #include "../drivers/sensor.h"

17 #include "../drivers/serial.h"

18 #include "../drivers/timer.h"

19 #include "../drivers/keyboard.h"

20
21 /******************************************************************
22 * STATIC FUNCTION PROTOTYPES *
23 *******************************************************************/

24 static Data8 checkError(void);

25
26 /******************************************************************
27 * STATIC DATA *
28 *******************************************************************/

29 static uData8 amount;

30 static char sensorVal[10], tmpp[10];

31
32 /*******************************************************************************
33 * FUNCTION IMPLEMENTATION *
34 ********************************************************************************/

35 /**
36 * @brief check if there is error in data acquisition

37 *
38 * @retval This function returns -1 if the OEM III module

39 * is either out of track or the sensor is disconnected

40 * from the OEM III module.

41 */

42 Data8 checkError(void){

43
44 Data8 err=0;

45
46 #if (TARGET)

47
48 lcd_clean();

49
50 if(IsSensorDisconnected()){

51 lcd_printf("No sensor",LINE1,1);

52 err=-1;

53
54 }

55 else if(IsOutofTrack()){

56 lcd_printf("OutOfTrack",LINE1,1);

57 err=-1;

58 }
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59
60 #endif

61
62 return err;

63
64 }

65
66 /**
67 * @brief show sensor data. This should be implemented when

68 * the sensor data must be shown. This function

69 * is called every second by the sensor driver.

70 */

71 void printValue(void){

72
73 uData8 sensorDat;

74
75 if(checkError()==0 && getButtonState()==FALSE){

76
77 lcd_clean();

78
79 sensorDat = getSenPos();

80
81 #if (TARGET)

82 switch(sensorDat){

83
84 case HR:

85 sprintf(sensorVal, "HR:%d", getHR());

86 lcd_printf(sensorVal,LINE1,1);

87 break;

88 case SPO2:

89 sprintf(sensorVal, "SPO2:%d",getSpO2());

90 lcd_printf(sensorVal,LINE1,1);

91 break;

92 case SPO2D:

93 sprintf(sensorVal, "SPO2D:%d",getSpO2D());

94 lcd_printf(sensorVal,LINE1,1);

95 break;

96 case SPO2FAST:

97 sprintf(sensorVal, "SPO2F:%d",getSpO2Fast());

98 lcd_printf(sensorVal,LINE1,1);

99 break;

100 case SPO2B:

101 sprintf(sensorVal, "SPO2B:%d",getSpO2B());

102 lcd_printf(sensorVal,LINE1,1);

103 break;

104 case EHR:

105 sprintf(sensorVal, "EHR:%d",getEHR());

106 lcd_printf(sensorVal,LINE1,1);

107 break;

108 case ESPO2:

109 sprintf(sensorVal, "ESPO2:%d",getESpO2());

110 lcd_printf(sensorVal,LINE1,1);

111 break;

112 case HRD:

113 sprintf(sensorVal, "HRD:%d",getHRD());

114 lcd_printf(sensorVal,LINE1,1);

115 break;

116 case EHRD:

117 sprintf(sensorVal, "EHRD:%d",getEHRD());

118 lcd_printf(sensorVal,LINE1,1);

119 break;

120 case ESPO2D:

121 sprintf(sensorVal, "ESpO2D:%d",getESpO2D());

122 lcd_printf(sensorVal,LINE1,1);

123 break;

124 case SREV:

125 sprintf(sensorVal, "SREV:%d",getSREV());

126 lcd_printf(sensorVal,LINE1,1);

127 break;

128 }

129 #endif

130 }

131 }

132
133
134 int main (void){

135
136 #if (TARGET)

137
138 lcd_clean(); /* clean display 16x2 */
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139 serial_init(9600); /* configure the serial port */

140 initTimer0ms(600);

141 initTimer0s(1);

142 initSensor();

143 initMenuapp();

144 initLog(2)

145 insertLogElement(2);

146 insertLogElement(2);

147 insertLogElement(2);

148 while(TRUE){

149
150 /* Infinite loop */

151
152 }

153
154 #endif

155
156 }

LISTING A.3: Source code to Pulse Oximeter file pulse/apps/main.c

1 /*********************************************************
2 * File: menu_app.c

3 * Abstract: Implementation of the application menu

4 * Platform: AT89S8252

5 * Project: Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 /***********************************************
11 * INCLUDE FILES *
12 ************************************************/

13 #include <assert.h>

14 #include "menu_app.h"

15
16 /***********************************************
17 * LOCAL MACROS *
18 ************************************************/

19 #define BOUNCEVAL (2)

20 #define PROGRESS (100)

21
22 #define SETMSTATE(ST) \

23 if (bounce==0) { \

24 mstate=ST; \

25 bounce=BOUNCEVAL; \

26 } else { \

27 bounce--; \

28 if (bounce<0) { \

29 bounce=0; \

30 } \

31 } \

32
33 #define SETINC(parm) \

34 if (bounce==0) { \

35 parm++; \

36 bounce=BOUNCEVAL; \

37 } else { \

38 bounce--; \

39 if (bounce<0) { \

40 bounce=0; \

41 } \

42 } \

43
44 #define SETNEG(parm) \

45 if (bounce==0) { \

46 parm=!parm; \

47 bounce=BOUNCEVAL; \

48 } else { \

49 bounce--; \

50 if (bounce<0) { \

51 bounce=0; \

52 } \

53 } \

54
55 #define SETDEC(parm) \

56 if (bounce==0) { \

57 if (parm>0) { \

58 parm--; \
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59 } \

60 bounce=BOUNCEVAL; \

61 } else { \

62 bounce--; \

63 if (bounce<0) { \

64 bounce=0; \

65 } \

66 } \

67
68 #define SETBNEG(parm) \

69 if (bounce==0) { \

70 parm=!parm; \

71 bounce=BOUNCEVAL; \

72 } else { \

73 bounce--; \

74 if (bounce<0) { \

75 bounce=0; \

76 } \

77 } \

78
79 /******************************************************************
80 * STATIC FUNCTION PROTOTYPES *
81 *******************************************************************/

82 static void startApp(void);

83 static void empty(void);

84 static void stopApp(void);

85 static void setSampleTime(void);

86 static void enableLog(void);

87 static void selectHR(void);

88 static void selectSPO2(void);

89 static void setLog2PC(void);

90 static void connectCable(void);

91
92 /******************************************************************
93 * LOCAL STRUCTS *
94 *******************************************************************/

95 typedef struct {

96
97 uData8 hr;

98 uData8 spo2;

99 uData8 spo2d;

100 uData8 spo2fast;

101 uData8 spo2b;

102 uData8 ehr;

103 uData8 espo2;

104 uData8 hrd;

105 uData8 ehrd;

106 uData8 espo2d;

107
108 } showData;

109
110 /******************************************************************
111 * STATIC DATA *
112 *******************************************************************/

113 static uData8 stime, elog, bounce, exists_log;

114 static uData8 count_pos, count_elem, count, global_progress, unit_progress;

115 static uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

116 showData show;

117 static char menuVal[10], opData[AMOUNTOFDATA];

118
119 #include <stdbool.h>

120
121 bool p_startButton, q_startPressed = false;

122
123 /*******************************************************************************
124 * FUNCTION IMPLEMENTATION *
125 ********************************************************************************/

126 void initMenuApp (void) {

127
128 mstate=1;

129 amount=0;

130 stime=1;

131 bounce=0;

132 elog=TRUE;

133 show.hr=TRUE;

134 show.spo2=TRUE;

135 show.spo2d=FALSE;

136 show.spo2fast=FALSE;

137 show.spo2b=FALSE;

138 show.ehr=FALSE;
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139 show.espo2=FALSE;

140 show.hrd=FALSE;

141 show.ehrd=FALSE;

142 show.espo2d=FALSE;

143 enable_buttons=TRUE;

144 exists_log=FALSE;

145 log2pc=FALSE;

146 connect_cable=FALSE;

147 count_pos=0;

148 count_elem=0;

149 strcpy(menuVal, "");

150 strcpy(opData, "");

151 opData[0]=HR;

152 opData[1]=SPO2;

153 count=0;

154 unit_progress=0;

155 }

156
157 uData8 selectItem(void) {

158
159 if (enable_buttons) {

160 switch(mstate) {

161 case SETSAMPLETIME:

162 SETMSTATE(SETLOG);

163 break;

164 case SETLOG:

165 if (exists_log) {

166 SETMSTATE(TRANSFERLOG);

167 } else {

168 SETMSTATE(SETHR);

169 }

170 break;

171 case TRANSFERLOG:

172 SETMSTATE(SETHR);

173 break;

174 case SETHR:

175 SETMSTATE(SETSPO2);

176 break;

177 case SETSPO2:

178 SETMSTATE(SETHRD);

179 break;

180 case SETHRD:

181 SETMSTATE(SETEHRD);

182 break;

183 case SETEHRD:

184 SETMSTATE(SETEHR);

185 break;

186 case SETEHR:

187 SETMSTATE(SETSPO2D);

188 break;

189 case SETSPO2D:

190 SETMSTATE(SETSPO2FAST);

191 break;

192 case SETSPO2FAST:

193 SETMSTATE(SETSPO2B);

194 break;

195 case SETSPO2B:

196 SETMSTATE(SETESPO2);

197 break;

198 case SETESPO2:

199 SETMSTATE(SETESPO2D);

200 break;

201 case SETESPO2D:

202 SETMSTATE(SETSAMPLETIME);

203 break;

204 }

205
206 #if VERIFICATION

207 assert(mstate>=SETSAMPLETIME);

208 #endif

209
210 }

211 return mstate;

212 }

213
214 static void startApp(void) {

215
216 if (exists_log) {

217 mstate=CONCABLE;

218 if (connect_cable){
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219 sendLog2PC();

220 #if (TARGET)

221 lcd_clean();

222 lcd_printf("Transferring...", 1, 1);

223 #endif

224 }

225
226 } else {

227 enable_buttons=FALSE;

228 setCountElem();

229 }

230 }

231
232 static void empty(void) {

233
234 #if (TARGET)

235 lcd_clean();

236 lcd_printf("EMPTY", 1, 1);

237 #endif

238 }

239
240 static void stopApp(void) {

241
242 if (getBufferSize()!=0){

243 exists_log=TRUE;

244 }

245 enable_buttons=TRUE;

246 mstate=SETSAMPLETIME;

247 }

248
249 uData8 KeyUp(void) {

250
251 uData8 result=0;

252
253 if (enable_buttons) {

254
255 switch(mstate) {

256 case SETSAMPLETIME:

257 SETINC(stime);

258 result=stime;

259 break;

260 case SETLOG:

261 SETNEG(elog);

262 result=elog;

263 break;

264 case TRANSFERLOG:

265 SETNEG(log2pc);

266 result=log2pc;

267 break;

268 case SETSPO2:

269 SETNEG(show.spo2);

270 result=show.spo2;

271 break;

272 case SETHR:

273 SETNEG(show.hr);

274 result=show.hr;

275 break;

276 case CONCABLE:

277 SETNEG(connect_cable);

278 result=connect_cable;

279 break;

280 case SETHRD:

281 SETNEG(show.hrd);

282 result=show.hrd;

283 break;

284 case SETEHRD:

285 SETNEG(show.ehrd);

286 result=show.ehrd;

287 break;

288 case SETEHR:

289 SETNEG(show.ehr);

290 result=show.ehr;

291 break;

292 case SETSPO2D:

293 SETNEG(show.spo2d);

294 result=show.spo2d;

295 break;

296 case SETSPO2FAST:

297 SETNEG(show.spo2fast);

298 result=show.spo2fast;
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299 break;

300 case SETSPO2B:

301 SETNEG(show.spo2b);

302 result=show.spo2b;

303 break;

304 case SETESPO2:

305 SETNEG(show.espo2);

306 result=show.espo2;

307 break;

308 case SETESPO2D:

309 SETNEG(show.espo2d);

310 result=show.espo2d;

311 break;

312 default:

313 result=-1;

314 }

315 }

316
317 #if VERIFICATION

318 assert(result>=0);

319 #endif

320
321 return result;

322 }

323
324 uData8 KeyDown(void) {

325
326 uData8 result=0;

327
328 if (enable_buttons) {

329
330 switch(mstate) {

331 case SETSAMPLETIME:

332 SETDEC(stime);

333 result=stime;

334 break;

335 case SETLOG:

336 SETBNEG(elog);

337 result=elog;

338 break;

339 case TRANSFERLOG:

340 SETNEG(log2pc);

341 result=log2pc;

342 break;

343 case SETSPO2:

344 SETBNEG(show.spo2);

345 result=show.spo2;

346 break;

347 case SETHR:

348 SETBNEG(show.hr);

349 result=show.hr;

350 break;

351 case CONCABLE:

352 SETBNEG(connect_cable);

353 result=connect_cable;

354 case SETHRD:

355 SETBNEG(show.hrd);

356 result=show.hrd;

357 break;

358 case SETEHRD:

359 SETBNEG(show.ehrd);

360 result=show.ehrd;

361 break;

362 case SETEHR:

363 SETBNEG(show.ehr);

364 result=show.ehr;

365 break;

366 case SETSPO2D:

367 SETBNEG(show.spo2d);

368 result=show.spo2d;

369 break;

370 case SETSPO2FAST:

371 SETBNEG(show.spo2fast);

372 result=show.spo2fast;

373 break;

374 case SETSPO2B:

375 SETBNEG(show.spo2b);

376 result=show.spo2b;

377 break;

378 case SETESPO2:
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379 SETBNEG(show.espo2);

380 result=show.espo2;

381 break;

382 case SETESPO2D:

383 SETBNEG(show.espo2d);

384 result=show.espo2d;

385 break;

386 default:

387 result=-1;

388 }

389 }

390
391 #if VERIFICATION

392 assert(result>=0);

393 #endif

394
395 return result;

396 }

397
398 #if 1

399 Data8 chooseSensorData(uData8 op, uData8 en) {

400
401 Data8 err=0;

402
403 if (op>AMOUNTOFDATA || op<1) {

404 err=-1;

405 return err;

406 }

407
408 if(en){

409 opData[op-1] = op;

410 } else {

411 opData[op-1] = en;

412 }

413 err = opData[op-1];

414
415 #if VERIFICATION

416 assert(err>=0);

417 #endif

418
419 return err;

420 }

421 #endif

422
423 static void setSampleTime(void) {

424
425 sprintf(menuVal, "Sample time: %d", stime);

426
427 #if (TARGET)

428 lcd_clean();

429 lcd_printf(menuVal, LINE1, 1);

430 #endif

431
432 }

433
434 static void connectCable(void) {

435
436
437 if (connect_cable == TRUE) {

438 sprintf(menuVal, "Cable? yes");

439 } else {

440 sprintf(menuVal, "Cable? no");

441 }

442
443 #if (TARGET)

444 lcd_clean();

445 lcd_printf(menuVal, LINE1, 1);

446 #endif

447
448 }

449
450 static void enableLog(void) {

451
452
453 if (elog == TRUE) {

454 sprintf(menuVal, "Enable log: yes");

455 } else {

456 sprintf(menuVal, "Enable log: no");

457 }

458
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459 #if (TARGET)

460 lcd_clean();

461 lcd_printf(menuVal, LINE1, 1);

462 #endif

463
464 }

465
466 static void selectHR(void) {

467
468 uData8 ret;

469
470 ret = chooseSensorData(HR, show.hr);

471 if (ret == 0) {

472 if (show.hr==TRUE) {

473 sprintf(menuVal, "Show HR: yes");

474 } else {

475 sprintf(menuVal, "Show HR: no");

476 }

477 #if (TARGET)

478 lcd_clean();

479 lcd_printf(menuVal, LINE1, 1);

480 #endif

481 }

482 }

483
484 static void selectSPO2(void) {

485
486 uData8 ret;

487
488 ret = chooseSensorData(SPO2, show.spo2);

489 if (ret == 0) {

490 if (show.spo2==TRUE) {

491 sprintf(menuVal, "Show SPO2: yes");

492 } else {

493 sprintf(menuVal, "Show SPO2: no");

494 }

495 #if (TARGET)

496 lcd_clean();

497 lcd_printf(menuVal, LINE1, 1);

498 #endif

499 }

500 }

501
502 static void selectHRD(void) {

503
504 uData8 ret;

505
506 ret = chooseSensorData(HRD, show.hrd);

507 if (ret == 0) {

508 if (show.hrd==TRUE) {

509 sprintf(menuVal, "Show HRD: yes");

510 } else {

511 sprintf(menuVal, "Show HRD: no");

512 }

513 #if (TARGET)

514 lcd_clean();

515 lcd_printf(menuVal, LINE1, 1);

516 #endif

517 }

518 }

519
520 static void selectEHR(void) {

521
522 uData8 ret;

523
524 ret = chooseSensorData(EHR, show.ehr);

525 if (ret == 0) {

526 if (show.ehr==TRUE) {

527 sprintf(menuVal, "Show EHR: yes");

528 } else {

529 sprintf(menuVal, "Show EHR: no");

530 }

531 #if (TARGET)

532 lcd_clean();

533 lcd_printf(menuVal, LINE1, 1);

534 #endif

535 }

536 }

537
538 static void selectSPO2D(void) {
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539
540 uData8 ret;

541
542 ret = chooseSensorData(SPO2D, show.spo2d);

543 if (ret == 0) {

544 if (show.spo2d==TRUE) {

545 sprintf(menuVal, "Show SPO2D: yes");

546 } else {

547 sprintf(menuVal, "Show SPO2D: no");

548 }

549 #if (TARGET)

550 lcd_clean();

551 lcd_printf(menuVal, LINE1, 1);

552 #endif

553 }

554 }

555
556 static void selectSPO2FAST(void) {

557
558 uData8 ret;

559
560 ret = chooseSensorData(SPO2FAST, show.spo2fast);

561 if (ret == 0) {

562 if (show.spo2fast==TRUE) {

563 sprintf(menuVal, "Show SPO2F: yes");

564 } else {

565 sprintf(menuVal, "Show SPO2F: no");

566 }

567 #if (TARGET)

568 lcd_clean();

569 lcd_printf(menuVal, LINE1, 1);

570 #endif

571 }

572 }

573
574 static void selectSPO2B(void) {

575
576 uData8 ret;

577
578 ret = chooseSensorData(SPO2B, show.spo2b);

579 if (ret == 0) {

580 if (show.spo2b==TRUE) {

581 sprintf(menuVal, "Show SPO2B: yes");

582 } else {

583 sprintf(menuVal, "Show SPO2B: no");

584 }

585 #if (TARGET)

586 lcd_clean();

587 lcd_printf(menuVal, LINE1, 1);

588 #endif

589 }

590 }

591
592 static void selectESPO2(void) {

593
594 uData8 ret;

595
596 ret = chooseSensorData(ESPO2, show.espo2);

597 if (ret == 0) {

598 if (show.espo2==TRUE) {

599 sprintf(menuVal, "Show ESPO2: yes");

600 } else {

601 sprintf(menuVal, "Show ESPO2: no");

602 }

603 #if (TARGET)

604 lcd_clean();

605 lcd_printf(menuVal, LINE1, 1);

606 #endif

607 }

608 }

609
610 static void selectESPO2D(void) {

611
612 uData8 ret;

613
614 ret = chooseSensorData(ESPO2D, show.espo2d);

615 if (ret == 0) {

616 if (show.espo2d==TRUE) {

617 sprintf(menuVal, "Show ESPO2D: yes");

618 } else {
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619 sprintf(menuVal, "Show ESPO2D: no");

620 }

621 #if (TARGET)

622 lcd_clean();

623 lcd_printf(menuVal, LINE1, 1);

624 #endif

625 }

626 }

627
628 static void setLog2PC(void) {

629
630 if (exists_log) {

631 if (log2pc == TRUE) {

632 sprintf(menuVal, "Send log: yes");

633 } else {

634 sprintf(menuVal, "Send log: no");

635 }

636 }

637
638 #if (TARGET)

639 lcd_clean();

640 lcd_printf(menuVal, LINE1, 1);

641 #endif

642
643 }

644
645 /**
646 * @brief Timer interrupt

647 *
648 * @retval void

649 *
650 * Comments:

651 * This procedure should be implemented if the

652 * timer is configured. The code inside this

653 * this procedure will be called according to the

654 * time specified in initTimer0s(uData8 time_s).

655 */

656 void timers_interrupt(void){

657
658 if (enable_buttons) {

659
660 switch(mstate){

661 case SETSAMPLETIME:

662 setSampleTime();

663 break;

664 case SETLOG:

665 enableLog();

666 break;

667 case TRANSFERLOG:

668 setLog2PC();

669 break;

670 case SETHR:

671 selectHR();

672 amount++;

673 break;

674 case SETSPO2:

675 selectSPO2();

676 amount++;

677 break;

678 case SETHRD:

679 selectHRD();

680 amount++;

681 break;

682 case SETEHR:

683 selectEHR();

684 amount++;

685 break;

686 case SETSPO2D:

687 selectSPO2D();

688 amount++;

689 break;

690 case SETSPO2FAST:

691 selectSPO2FAST();

692 amount++;

693 break;

694 case SETSPO2B:

695 selectSPO2B();

696 amount++;

697 break;

698 case SETESPO2:
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699 selectESPO2();

700 amount++;

701 break;

702 case SETESPO2D:

703 selectESPO2D();

704 amount++;

705 break;

706 case CONCABLE:

707 connectCable();

708 break;

709 }

710 }

711 }

712
713 #if 1

714 uData8 calculateUnitProgress(void){

715
716 uData8 length;

717
718 length = getBufferSize();

719 if (length!=0) {

720 unit_progress = (PROGRESS/length);

721 #if VERIFICATION

722 assert(unit_progress>=0);

723 #endif

724 }

725
726 return unit_progress;

727 }

728 #endif

729
730 uData8 logTransferProgress(void) {

731
732 uData8 global_progress;

733
734 count++;

735 global_progress = (unit_progress*count);

736 sprintf(menuVal, "Progress: %d%", global_progress);

737 #if (TARGET)

738 lcd_clean();

739 lcd_printf(menuVal, LINE1, 1);

740 #endif

741
742 return global_progress;

743 }

744
745 void timerms_interrupt(void){

746
747 uData8 keys=0x00; /* no key pressed */

748
749 #if (TARGET)

750 keys=P1;

751 pressed_key = checkPressedButton(keys);

752 #endif

753
754 #if VERIFICATION

755 pressed_key = startButton;

756 //this indicates that startButton has been pressed

757 p_startButton = 1;

758 //assert(keys>=0);

759 #endif

760
761 if(pressed_key>0){

762
763 switch(pressed_key){

764 case startButton:

765 // startApp();

766 q_startPressed=1;

767 break;

768 #if 0

769 case stopButton:

770 stopApp();

771 break;

772 case emptyButton:

773 empty();

774 break;

775 case upButton:

776 KeyUp();

777 break;

778 case downButton:
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779 KeyDown();

780 break;

781 case selectButton:

782 selectItem();

783 break;

784 #endif

785 }

786
787 }

788 }

789
790 void setCountElem(void){

791
792 if (opData[0]!=’\0’) {

793 count_elem = strlen(opData);

794 #if VERIFICATION

795 assert(count_elem>=0);

796 #endif

797 }

798 }

799
800 uData8 getSenPos(void){

801
802 uData8 result=0;

803
804 ++count_pos;

805 switch(opData[count_pos-1]){

806 case HR:

807 result=HR;

808 break;

809 case SPO2:

810 result=SPO2;

811 break;

812 case EHR:

813 result=EHR;

814 break;

815 case HRD:

816 result=HRD;

817 break;

818 case EHRD:

819 result=EHRD;

820 break;

821 case SPO2D:

822 result=SPO2D;

823 break;

824 case SPO2FAST:

825 result=SPO2FAST;

826 break;

827 case SPO2B:

828 result=SPO2B;

829 break;

830 case ESPO2:

831 result=ESPO2;

832 break;

833 case ESPO2D:

834 result=ESPO2D;

835 break;

836 }

837
838 if (count_pos == count_elem) {

839 count_pos = 0;

840 }

841
842 #if VERIFICATION

843 assert(result>=0);

844 assert(count_pos>0);

845 #endif

846
847 return result;

848
849 }

850
851 uData8 getButtonState(void){

852
853 return enable_buttons;

854
855 }

LISTING A.4: Source code for Pulse Oximeter file pulse/apps/menu app.c



154 Appendix A Code samples

1 /*********************************************************
2 * File: menu_app.h

3 * Abstract: Interface of the application menu

4 * Platform: AT89S8252

5 * Project: Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 /*******************
11 * INCLUDE FILES *
12 ********************/

13 #if (TARGET)

14 #include <REG51.H>

15 #endif

16
17 #include "../drivers/global.h"

18 #include "../drivers/sensor.h"

19 #include "../drivers/lcd_driver.h"

20 #include "../drivers/keyboard.h"

21 #include "../utils/log.h"

22
23 /*******************
24 * EXPORTED MACROS *
25 ********************/

26 /**
27 * @brief indicate the amount of sensor data to be displayed.

28 */

29 #define AMOUNTOFDATA (11)

30
31 /***********************************************
32 * ENUMERATIONS *
33 ************************************************/

34 enum MenuSates { SETSAMPLETIME=1, SETLOG, TRANSFERLOG, SETHR,

35 SETSPO2, CONCABLE, SETHRD, SETEHRD, SETEHR,

36 SETSPO2D, SETSPO2FAST, SETSPO2B, SETESPO2, SETESPO2D,

37 SETSREV };

38
39 /********************************
40 * EXPORTED FUNCTIONS PROTOTYPES *
41 *********************************/

42 /**
43 * @brief Function used to initialize the menu internal variables.

44 *
45 * @retval void

46 */

47 extern void initMenuApp(void);

48
49 /**
50 * @brief Function used to get the sensor data that must be shown

51 * currently to the user.

52 *
53 * @retval The sensor data to be shown. Otherwise, -1 is returned.

54 */

55 extern uData8 getSenPos(void);

56
57 /**
58 * @brief Function used to know which buttons are enables at a given moment.

59 *
60 * @retval uData8

61 */

62 extern uData8 getButtonState(void);

63
64 /**
65 * @brief Function used to choose which sensor data will be displayed to the user.

66 *
67 * @retval 0 success, else failure.

68 */

69 extern Data8 chooseSensorData(uData8 op, uData8 en);

70
71 /**
72 * @brief Function used to set the amount of elements to be displayed on the display.

73 *
74 * @retval void

75 */

76 extern void setCountElem(void);

77
78 /**
79 * @brief Function used to calculate the value of the progress unit.
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80 *
81 * @retval The value of the progress unit. Otherwise, -1 is returned.

82 */

83 extern uData8 calculateUnitProgress(void);

84
85 /**
86 * @brief Function used to select the data item that will be shown to the user.

87 *
88 * @retval The value of the menu state. Otherwise, -1 is returned.

89 */

90 extern uData8 selectItem(void);

91
92 /**
93 * @brief Function used to increase the value of a menu item.

94 *
95 * @retval The value of the item that has been increased. Otherwise, -1 is returned.

96 */

97 extern uData8 KeyUp(void);

98
99 /**

100 * @brief Function used to deacrease the value of a menu item.

101 *
102 * @retval The value of the item that has been deacreased. Otherwise, -1 is returned.

103 */

104 extern uData8 KeyDown(void);

LISTING A.5: Source code for Pulse Oximeter file pulse/apps/menu app.h

1 /*********************************************************
2 * File: global.h

3 * Abstract: Global variables of the system

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 #ifndef _GLOBAL_H

11 #define _GLOBAL_H

12
13 /*******************
14 * INCLUDE FILES *
15 ********************/

16 #include <string.h> /* functions to manipulate the strings */

17 #include <stdio.h>

18 #include <stdlib.h>

19 #include <assert.h>

20
21 #define TRUE (1)

22 #define FALSE (0)

23 #define NULL_POINTER (0)

24
25 /**
26 * @brief 0 -> indicates that the software must be

27 * compiled using GCC. 1 -> indicates that

28 * the software must be compiled using sdcc.

29 */

30 #define TARGET (0)

31
32 /**
33 * @brief 1 -> indicates that the hardware dependent

34 * software will be verified by model checker

35 * tools. 0 -> otherwise.

36 */

37 #define VERIFICATION (1)

38
39 #define BIT0 (0x01)

40 #define BIT1 (0x02)

41 #define BIT2 (0x04)

42 #define BIT3 (0x08)

43 #define BIT4 (0x10)

44 #define BIT5 (0x20)

45 #define BIT6 (0x40)

46 #define BIT7 (0x80)

47 #define BIT8 (BIT7<<1)

48
49 #define LCDSIZE (32)

50 #define LINE1 1

51 #define LINE2 2
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52
53 /********************************
54 * ENUMERATIONS

55 *********************************/

56 enum sensorOp { HR=1, SPO2, SPO2D, SPO2FAST, SPO2B, EHR,

57 ESPO2, HRD, EHRD, ESPO2D, SREV };

58
59
60 /******************************************************************
61 * TYPEDEF DECLARATION *
62 *******************************************************************/

63 typedef unsigned char _uchar;

64 typedef _Bool _array_of_2_Bool[2];

65 typedef _Bool _array_of_3_Bool[3];

66 typedef _Bool _array_of_4_Bool[4];

67 typedef _Bool _array_of_6_Bool[6];

68 typedef _Bool _array_of_12_Bool[12];

69 typedef _Bool _array_of_11_Bool[11];

70 typedef _array_of_3_Bool _array_of_2__array_of_3_Bool[2];

71 typedef _array_of_2_Bool _array_of_2__array_of_2_Bool[2];

72
73
74 /*********************
75 * EXPORTED STRUCT *
76 **********************/

77
78 struct module_oc8051_uart {

79 _Bool rst;

80 _Bool clk;

81 _Bool bit_in;

82 _Bool wr;

83 _Bool rxd;

84 _Bool wr_bit;

85 _Bool t1_ow;

86 _Bool brate2;

87 _Bool pres_ow;

88 _Bool rclk;

89 _Bool tclk;

90 _uchar data_in;

91 _uchar wr_addr;

92 _Bool txd;

93 _Bool intr;

94 _uchar scon;

95 _uchar pcon;

96 _uchar sbuf;

97 _Bool t1_ow_buf;

98 _Bool trans;

99 _Bool receive;

100 _Bool tx_done;

101 _Bool rx_done;

102 _Bool rxd_r;

103 _Bool shift_tr;

104 _Bool shift_re;

105 _array_of_2_Bool rx_sam;

106 _array_of_4_Bool tr_count;

107 _array_of_4_Bool re_count;

108 _uchar sbuf_rxd;

109 _array_of_12_Bool sbuf_rxd_tmp;

110 _array_of_11_Bool sbuf_txd;

111 _Bool ren;

112 _Bool tb8;

113 _Bool rb8;

114 _Bool ri;

115 _Bool smod;

116 _Bool wr_sbuf;

117 _Bool sc_clk_tr;

118 _Bool smod_clk_tr;

119 _Bool sc_clk_re;

120 _Bool smod_clk_re;

121 };

122
123 struct module_oc8051_tc {

124 _uchar wr_addr;

125 _uchar data_in;

126 _Bool clk;

127 _Bool rst;

128 _Bool wr;

129 _Bool wr_bit;

130 _Bool ie0;

131 _Bool ie1;
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132 _Bool tr0;

133 _Bool tr1;

134 _Bool t0;

135 _Bool t1;

136 _Bool pres_ow;

137 _uchar tmod;

138 _uchar tl0;

139 _uchar th0;

140 _uchar tl1;

141 _uchar th1;

142 _Bool tf0;

143 _Bool tf1;

144 _Bool tf1_0;

145 _Bool tf1_1;

146 _Bool t0_buff;

147 _Bool t1_buff;

148 _Bool tc0_add;

149 _Bool tc1_add;

150 };

151
152 struct module_oc8051_int {

153 _uchar wr_addr;

154 _uchar data_in;

155 _Bool wr;

156 _Bool tf0;

157 _Bool tf1;

158 _Bool t2_int;

159 _Bool ie0;

160 _Bool ie1;

161 _Bool clk;

162 _Bool rst;

163 _Bool reti;

164 _Bool wr_bit;

165 _Bool bit_in;

166 _Bool ack;

167 _Bool uart_int;

168 _Bool tr0;

169 _Bool tr1;

170 _Bool intr;

171 _uchar int_vec;

172 _uchar ie;

173 _uchar tcon;

174 _uchar ip;

175 _array_of_4_Bool tcon_s;

176 _Bool tcon_tf1;

177 _Bool tcon_tf0;

178 _Bool tcon_ie1;

179 _Bool tcon_ie0;

180 _array_of_3_Bool isrc_cur;

181 _array_of_2__array_of_3_Bool isrc;

182 _array_of_2_Bool int_dept;

183 _array_of_2_Bool int_dept_1;

184 _Bool int_proc;

185 _array_of_2__array_of_2_Bool int_lev;

186 _Bool cur_lev;

187 _array_of_6_Bool int_l0;

188 _array_of_6_Bool int_l1;

189 _array_of_6_Bool ip_l0;

190 _array_of_6_Bool ip_l1;

191 _array_of_6_Bool int_src;

192 _Bool il0;

193 _Bool il1;

194 _Bool tf0_buff;

195 _Bool tf1_buff;

196 _Bool ie0_buff;

197 _Bool ie1_buff;

198 };

199
200
201 /********************************
202 * EXPORTED FUNCTIONS PROTOTYPES *
203 *********************************/

204
205 #endif /* _GLOBAL_H */

LISTING A.6: Source code for Pulse Oximeter file pulse/drivers/global.h

1 /******************************************************************
2 * File: keyboard.c
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3 * Abstract: Implementation of the keyboard functions

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 ******************************************************************/

9
10 /******************************************************************
11 * INCLUDE FILES *
12 ******************************************************************/

13 #include "keyboard.h"

14
15 /******************************************************************
16 * ENUMARATIONS *
17 *******************************************************************/

18 enum Key_State {START=BIT0, STOP=BIT1, EMPTY1=BIT2, EMPTY2=BIT3,

19 UP=BIT4, DOWN=BIT5, SELECT=BIT6, EMPTY3=BIT7};

20
21 /*******************************************************************************
22 * FUNCTION IMPLEMENTATION *
23 ********************************************************************************/

24
25 Data8 checkPressedButton(uData8 Key){

26
27 int command=0;

28
29 switch(Key){

30
31 case START: command=startButton; break;

32 case STOP: command=stopButton; break;

33 case UP: command=upButton; break;

34 case DOWN: command=downButton; break;

35 case SELECT: command=selectButton; break;

36 case EMPTY1: command=emptyButton; break;

37 case EMPTY2: command=emptyButton; break;

38 case EMPTY3: command=emptyButton; break;

39
40 }

41
42 #if VERIFICATION

43 assert(command>=-1);

44 #endif

45
46 return command;

47
48 }

LISTING A.7: Source code for Pulse Oximeter file pulse/drivers/keyboard.c

1 /*********************************************************
2 * File: serial.h

3 * Abstract: Interface of the keyboard driver

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9 #ifndef _KEYBOARD_H

10 #define _KEYBOARD_H

11
12 /*******************
13 * INCLUDE FILES *
14 ********************/

15 #include "global.h"

16 #include "sensor.h"

17 #include "lcd_driver.h"

18
19 /*******************
20 * ENUMARATIONS *
21 ********************/

22 /**
23 * @brief indicate the all available buttons of the keyboard.

24 */

25 enum Key_Value {startButton=1, stopButton, emptyButton, upButton,

26 downButton, selectButton};

27
28 /********************************
29 * EXPORTED FUNCTIONS PROTOTYPES *
30 *********************************/
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31 /**
32 * @brief Function used to detect the key that the user pressed

33 *
34 * @retval Data8

35 */

36 extern Data8 checkPressedButton(uData8);

37
38 #endif /* _KEYBOARD_H */

LISTING A.8: Source code for Pulse Oximeter file pulse/drivers/keyboard.h

1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

2 ; File: LCD.a51

3 ; Abstract: Functions to access the LCD in Assembly

4 ; Platform: AT89S8252

5 ; Project Pulse Oximeter

6 ; Author(s): Lucas Cordeiro

7 ; Copyright (C)2007 DCC, Federal University of Amazonas

8 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

9
10 .globl _lcd_init

11
12 _lcd_init:

13
14 ;TIMER EQU 45535 ;50.000us

15
16 lcall inic_display

17 mov a,#0x01

18 lcall wrcar

19 mov a,#0x80

20 lcall wrcar

21 mov R1,#0x33

22
23
24 inic_display:

25
26 lcall t5ms

27 MOV A,#0x38 ;00111000b | 0001 1100

28 LCALL wrcar ; 1 c

29 MOV A,#0x06 ; 00000110 | 0110 0000

30 LCALL wrcar ; 6 0

31 MOV A,#0x0E ; 00001110 | 0111 0000

32 LCALL wrcar ; 7 0

33 MOV A,#0x01 ; 00000001 | 1000 0000 (Limpa display

34 LCALL wrcar ; 8 0

35 MOV A,#0x0C ;desliga cursor

36 LCALL wrcar

37 LCALL t5ms

38 RET

39
40 wrcar:

41 push DPH

42 push DPL

43
44 mov DPTR,#0x8000

45 movx @DPTR,A

46 lcall t5ms

47
48 pop DPL

49 pop DPH

50 ret

51
52 t5ms:

53 MOV TL0,#0xdf

54 MOV TH0,#0xb1

55 SETB TR0

56 ; JNB TF0,$

57 CLR TR0

58 CLR TF0

59 RET

60
61 ; SOURCE LINE # 3

62 ;

63 ; }

64 ; SOURCE LINE # 5

65 RET

66 ; END OF lcd_init

LISTING A.9: Source code for Pulse Oximeter file pulse/drivers/lcd.asm
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1 /*********************************************************
2 * File: LCD.c

3 * Abstract: Implementation of the LCD

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 #include <string.h> /* functions to manipulate strings */

11
12 /***********************************************
13 * INCLUDE FILES *
14 ************************************************/

15 #include "lcd_driver.h"

16
17 /* Assembly routines called from C program */

18 extern void write2lcd(unsigned char dado);

19 extern void lcd_init(void);

20
21 /******************************************************************
22 * STATIC DATA *
23 *******************************************************************/

24 static int length=0;

25
26 /*******************************************************************************
27 * FUNCTION IMPLEMENTATION *
28 ********************************************************************************/

29 void lcd_write(const char *sPtr, int line, int column){

30
31 size_t size;

32 int i, flag_l1=FALSE, flag_l2=FALSE;

33 char line1[LCDSIZE/2], line2[LCDSIZE/2];

34 const char msg[LCDSIZE/2]="Message too long";

35
36 if (sPtr!=NULL)

37 size = strlen(sPtr);

38
39 for(i=0; i<LCDSIZE/2; i++){

40 line1[i]=’\0’;

41 line2[i]=’\0’;

42 }

43
44 if(size<=LCDSIZE/2){

45 flag_l1=1;

46 for(i=0; i<LCDSIZE/2; i++){

47 line1[i]=sPtr[i];

48 }

49 }

50 else if (size>LCDSIZE/2 && size<=LCDSIZE){

51 flag_l1=1;

52 flag_l2=1;

53 for(i=0; i<size; i++){

54
55 if(i<LCDSIZE/2){

56 line1[i]=sPtr[i];

57 }

58 else{

59 line2[i-(LCDSIZE/2)]=sPtr[i];

60 }

61 }

62
63 }

64 else{

65 flag_l1=1;

66 for(i=0; i<(LCDSIZE/2); i++){

67 line1[i]=msg[i];

68 }

69 }

70
71 if(flag_l1==TRUE){

72 lcd_printf(line1, line, column);

73 }

74 if(flag_l2==TRUE){

75 lcd_printf(line2, line, column);

76 }

77
78 }

79
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80 /**
81 * @brief Clean the display

82 *
83 * @retval void

84 *
85 * Comments:

86 * - This procedures initializes the LCD in order to allow

87 * the programmer to write new strings on the LCD.

88 */

89
90 uData8 lcd_clean(void){

91
92 #if (TARGET)

93 lcd_init();

94 #endif

95
96 length=0;

97
98 return LCD_OK;

99 }

100
101 /**
102 * @brief: Write text to LCD

103 *
104 * retval: void

105 *
106 * Comments:

107 * - This routine outputs some text to the LCD display

108 * according to the line and column parameters passed

109 * by the programmer.

110 */

111
112 uData8 lcd_printf(const char *sPtr, _Bool line, int column)

113 {

114
115 int i,j;

116
117 if (line==1){

118 for(i=0; i<(column-1); i++){

119 #if (TARGET)

120 write2lcd(0x20); /* write "null" to LCD */

121 #endif

122 }

123 }

124 else if (line == 2){

125 for(i=0; i<(40-length); i++){

126 #if (TARGET)

127 write2lcd(0x20); /* write "null" to LCD */

128 #endif

129 }

130 for(j=0; j<(column-1); j++){

131 #if (TARGET)

132 write2lcd(0x20); /* write "null" to LCD */

133 #endif

134 }

135 }

136
137 if (sPtr != NULL) {

138 for ( ; *sPtr != ’\0’; sPtr++ ){

139 #if (TARGET)

140 write2lcd(*sPtr);

141 #endif

142 length++;

143 }

144 } else {

145 return NULL_POINTER;

146 }

147
148 return length;

149 }

LISTING A.10: Source code for Pulse Oximeter file pulse/drivers/lcd driver.c

1 /*********************************************************
2 * File: LCD.h

3 * Abstract: Interface of the LCD

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro
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7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 #ifndef _LCD_DRIVER_H

11 #define _LCD_DRIVER_H

12
13 /*******************
14 * INCLUDE FILES *
15 ********************/

16 #include "global.h"

17 #include "sensor.h"

18
19 #define LCD_OK (1)

20
21 /********************************
22 * EXPORTED FUNCTIONS PROTOTYPES *
23 *********************************/

24 /**
25 * @brief Function used to write text to LCD 16x2

26 *
27 * @retval void

28 */

29 uData8 lcd_printf(const char *sPtr, _Bool line, int column);

30 //inconsistency found by NuSMV2

31 //void lcd_printf(const char *sPtr, int line, int column);

32
33 /**
34 * @brief Function used to clean the LCD 16x2

35 *
36 * @retval void

37 */

38 extern uData8 lcd_clean(void);

39
40 #endif /* _LCD_DRIVER_H */

LISTING A.11: Source code for Pulse Oximeter file pulse/drivers/lcd driver.h

1 /*****************************************************************
2 * File: sensor.c

3 * Abstract: Implementation of the sensor interface

4 * Platform: AT89S8252

5 * Project: Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 ******************************************************************/

9
10 /***********************************************
11 * INCLUDE FILES *
12 ************************************************/

13 #include "sensor.h"

14 #include "../utils/log.h"

15
16 /******************************************************************
17 * STATIC FUNCTION PROTOTYPES *
18 *******************************************************************/

19 static void fillArrays(Data8 rawData, uData8 cont);

20
21 /******************************************************************
22 * STATIC DATA *
23 *******************************************************************/

24 static Data8 itr=0, checkSum[SIZEOFFRAME];

25 static uData8 contPos=0, contCHK=0, flag1=FALSE, flag2=FALSE, frame=0;

26 static char serialData[MAXNUMOFBYTE];

27 static char tmp[10];

28 static uData8 srev; /* Oximeter Firmware Revision Level */

29 #if (TARGET)

30 bit OutofTrack=FALSE;

31 #else

32 static Data8 OutofTrack=FALSE;

33 #endif

34
35 /*******************************************************************************
36 * FUNCTION IMPLEMENTATION *
37 ********************************************************************************/

38 void initSensor(void){

39
40 Data8 i;

41
42 df2_ptr = &df2;
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43 sf_ptr = &sf;

44 avg_ptr = &avg;

45
46 for(i=0; i<ELEMEN; i++){

47
48 df2_ptr->hrmsb[i]=0;

49 df2_ptr->hrlsb[i]=0;

50 df2_ptr->spo2[i]=0;

51 df2_ptr->spo2d[i]=0;

52 df2_ptr->spo2fast[i]=0;

53 df2_ptr->spo2b[i]=0;

54 df2_ptr->ehrmsb[i]=0;

55 df2_ptr->ehrlsb[i]=0;

56 df2_ptr->espo2[i]=0;

57 df2_ptr->hrdmsb[i]=0;

58 df2_ptr->hrdlsb[i]=0;

59 df2_ptr->ehrdmsb[i]=0;

60 df2_ptr->ehrdlsb[i]=0;

61 df2_ptr->espo2d[i]=0;

62
63 }

64
65 }

66
67 #if 1

68 void initStatus(void){

69
70 if (sf_ptr != NULL) {

71 sf_ptr->sync = FALSE;

72 sf_ptr->gprf = FALSE;

73 sf_ptr->rprf = FALSE;

74 sf_ptr->yprf = FALSE;

75 sf_ptr->snsa = FALSE;

76 sf_ptr->oot = FALSE;

77 sf_ptr->artf = FALSE;

78 sf_ptr->snsd = FALSE;

79 sf_ptr->bit7 = FALSE;

80 }

81 }

82 #else

83 //bug

84 void initStatus(void){

85
86 sf_ptr->sync = FALSE;

87 sf_ptr->gprf = FALSE;

88 sf_ptr->rprf = FALSE;

89 sf_ptr->yprf = FALSE;

90 sf_ptr->snsa = FALSE;

91 sf_ptr->oot = FALSE;

92 sf_ptr->artf = FALSE;

93 sf_ptr->snsd = FALSE;

94 sf_ptr->bit7 = FALSE;

95
96 }

97 #endif

98
99 /**

100 * @biref: Calculate the average of the sensor data

101 * @retval: integer

102 *
103 * Comments:

104 * - This function returns the average value of the data

105 * read by the sensor. For instance, the sensor provides

106 * the HR and SpO2 three times within one second then

107 * this function sums three HR or SpO2 values and

108 * divides them by the amount was read.

109 */

110 uData8 showAverage(Data8 *sensorData){

111
112 Data8 i=0, sensorValue=0, numElements=0, aux=0;

113 #if VERIFICATION

114 __CPROVER_assume(sensorData!=NULL);

115 #endif

116 for(i=0; i<ELEMEN; i++){

117 if ( sensorData[i]!=0 ){

118 sensorValue = sensorValue + sensorData[i];

119 ++numElements;

120 }

121 }

122 if (numElements!=0){
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123 aux = sensorValue/numElements;

124 }

125 else{

126 aux=0;

127 }

128
129 #if VERIFICATION

130 assert(aux>=0);

131 #endif

132
133 return aux;

134
135 }

136
137 uData8 signalInverter(Data8 signal) {

138
139 uData8 inverter;

140
141 if(signal >= 0) {

142 inverter = signal;

143 } else {

144 inverter = INV*signal;

145 }

146
147 #if VERIFICATION

148 assert(inverter>=0);

149 #endif

150
151 return inverter;

152 }

153
154 uData8 checkValidBytes(Data8 *chBytes) {

155
156 uData8 i, chSum=0, result=0, err=0;

157
158 for(i=0; i<(SIZEOFFRAME-1); i++) {

159 chSum = chSum + signalInverter(chBytes[i]);

160 }

161
162 result = (chSum%BIT8);

163
164 if(result!=chBytes[SIZEOFFRAME-1]) {

165 err=-1;

166 }

167
168 return err;

169 }

170
171 /**
172 * @brief: Collect the data from the sensor

173 * Return value: none

174 *
175 * Comments:

176 * - This procedures is called when there is data available

177 * in the serial port. Then it stores the data from the sensor

178 * in an array that will be used further in order to fill in

179 * other arrays.

180 */

181 void collectData(Data8 sensorByte) {

182
183 int chkerr, i;

184
185 debug("%dSENSOR->sensor.c:%d(%d), Testing...", TOKEN, __FUNCTION__, __LINE__);

186
187 if ( contPos==125) {

188 contPos=0;

189 frame=0;

190 flag1=FALSE;

191 flag2=FALSE;

192 }

193
194 if (sensorByte == 1 || flag2 == TRUE) {

195
196 if (flag2 == FALSE) {

197 checkSum[contCHK]=sensorByte;

198 contCHK++;

199 flag2=TRUE;

200 }

201 else if ((SYNC&sensorByte) == TRUE || flag1 == TRUE) {

202 checkSum[contCHK]=sensorByte;
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203 contCHK++;

204 } flag1=TRUE;

205 }

206 if(frame==3){

207 srev = checkSum[3];

208 }

209
210 if (contCHK == 5){

211 chkerr = checkValidBytes(checkSum);

212 if (chkerr == FALSE){

213 for(i=0; i<SIZEOFFRAME; i++){

214 fillArrays(checkSum[i], contPos);

215 contPos++;

216 }

217 }

218 else{

219 for(i=0; i<SIZEOFFRAME; i++){

220 if(i==3){

221 fillArrays(0, contPos);

222 contPos++;

223 }

224 else{

225 fillArrays(checkSum[i], contPos);

226 contPos++;

227 }

228 }

229 }

230 frame++;

231 contCHK=0;

232 }

233
234
235 #if VERIFICATION

236 assert(contPos>=0);

237 assert(contCHK>=0);

238 #endif

239
240 }

241
242 #if 1

243 uData8 sensorCheckStatus(Data8 statusByte){

244
245 if (sf_ptr != NULL)

246 {

247 sf_ptr->sync = SYNC&statusByte;

248 sf_ptr->gprf = GPRF&statusByte;

249 sf_ptr->rprf = RPRF&statusByte;

250 sf_ptr->yprf = YPRF&statusByte;

251 sf_ptr->snsa = SNSA&statusByte;

252 sf_ptr->oot = OOT&statusByte;

253 sf_ptr->artf = ARTF&statusByte;

254 sf_ptr->snsd = SNSD&statusByte;

255 sf_ptr->bit7 = SBIT7&statusByte;

256 } else {

257 return NULL_POINTER;

258 }

259
260 return SENSOR_OK;

261 }

262 #else

263 //bug

264 static void sensorCheckStatus(Data8 statusByte){

265
266 sf_ptr->sync = SYNC&statusByte;

267 sf_ptr->gprf = GPRF&statusByte;

268 sf_ptr->rprf = RPRF&statusByte;

269 sf_ptr->yprf = YPRF&statusByte;

270 sf_ptr->snsa = SNSA&statusByte;

271 sf_ptr->oot = OOT&statusByte;

272 sf_ptr->artf = ARTF&statusByte;

273 sf_ptr->snsd = SNSD&statusByte;

274 sf_ptr->bit7 = SBIT7&statusByte;

275
276 }

277 #endif

278
279 /**
280 * @brief: Fill in arrays with sensor data

281 * Return value: none

282 *
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283 * Comments:

284 * - This procedures is called in order to fill in

285 * the heart rate and SpO2 arrays in standard and

286 * display modes. When SpO2 and HR cannot be computed,

287 * the sensor will send a missing data indicator.

288 * For missing data, the HR equals 511 and the

289 * SpO2 equals 127.

290 */

291
292 static void fillArrays(Data8 rawData, uData8 cont){

293
294 if (cont==124){ /* verify if the packet is complete with 25 frames */

295 itr++;

296 }

297
298 if (itr==3){ /* check if three packets were already read */

299 itr=0;

300 setSensorData();

301 //printValue();

302 }

303
304 if (df2_ptr != NULL)

305 {

306 switch(cont){

307
308 case posStatus:

309 sensorCheckStatus(rawData);

310 break;

311 case posHRMSB:

312 if (rawData != 3){

313 df2_ptr->hrmsb[itr]= rawData*BIT7;

314 }

315 else{

316 df2_ptr->hrmsb[itr]=0;

317 }

318 break;

319 case posHRLSB:

320 if (rawData != 127){

321 df2_ptr->hrlsb[itr]= rawData;

322 }

323 else{

324 df2_ptr->hrlsb[itr]=0;

325 }

326 break;

327 case posSpO2:

328 if (rawData != 127){

329 df2_ptr->spo2[itr]= rawData;

330 }

331 else{

332 df2_ptr->spo2[itr]=0;

333 }

334 break;

335 #if 0

336 case posREV:

337 srev = rawData;

338 break;

339 #endif

340 case posSpO2D:

341 if (rawData != 127){

342 df2_ptr->spo2d[itr]= rawData;

343 }

344 else{

345 df2_ptr->spo2d[itr]=0;

346 }

347 break;

348 case posSpO2Fast:

349 if (rawData != 127){

350 df2_ptr->spo2fast[itr]= rawData;

351 }

352 else{

353 df2_ptr->spo2fast[itr]=0;

354 }

355 break;

356 case posSpO2BB:

357 if (rawData != 127){

358 df2_ptr->spo2b[itr]= rawData;

359 }

360 else{

361 df2_ptr->spo2b[itr]=0;

362 }
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363 break;

364 case posEHRMSB:

365 if (rawData != 3){

366 df2_ptr->ehrmsb[itr]= rawData*BIT7;

367 }

368 else{

369 df2_ptr->ehrmsb[itr]=0;

370 }

371 break;

372 case posEHRLSB:

373 if (rawData != 127){

374 df2_ptr->ehrlsb[itr]= rawData;

375 }

376 else{

377 df2_ptr->ehrlsb[itr]=0;

378 }

379 break;

380 case posESpO2:

381 if (rawData != 127){

382 df2_ptr->espo2[itr]= rawData;

383 }

384 else{

385 df2_ptr->espo2[itr]=0;

386 }

387 break;

388 case posESpO2D:

389 if (rawData != 127){

390 df2_ptr->espo2d[itr]= rawData;

391 }

392 else{

393 df2_ptr->espo2d[itr]=0;

394 }

395 break;

396 case posHRDMSB:

397 if (rawData != 3){

398 df2_ptr->hrdmsb[itr]= rawData*BIT7;

399 }

400 else{

401 df2_ptr->hrdmsb[itr]=0;

402 }

403 break;

404 case posHRDLSB:

405 if (rawData != 127){

406 df2_ptr->hrdlsb[itr]= rawData;

407 }

408 else{

409 df2_ptr->hrdlsb[itr]=0;

410 }

411 break;

412 case posEHRDMSB:

413 if (rawData != 3){

414 df2_ptr->ehrdmsb[itr]= rawData*BIT7;

415 }

416 else{

417 df2_ptr->ehrdmsb[itr]=0;

418 }

419 break;

420 case posEHRDLSB:

421 if (rawData != 127){

422 df2_ptr->ehrdlsb[itr]= rawData;

423 }

424 else{

425 df2_ptr->ehrdlsb[itr]=0;

426 }

427 break;

428 }

429 }

430 #if VERIFICATION

431 assert(itr<4);

432 #endif

433 }

434
435 /**
436 * @brief This sets all HR and SpO2 data in standard

437 * and display mode.

438 *
439 * Comments: This procedure is called every second.

440 */

441 uData8 setSensorData(void){

442
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443 if (df2_ptr != NULL)

444 {

445 avg_ptr->hr = showAverage(df2_ptr->hrmsb) + showAverage(df2_ptr->hrlsb);

446 avg_ptr->hrd = (showAverage(df2_ptr->hrdmsb) + showAverage(df2_ptr->hrdlsb));

447 avg_ptr->ehrd = (showAverage(df2_ptr->ehrdmsb) + showAverage(df2_ptr->ehrdlsb));

448 avg_ptr->ehr = (showAverage(df2_ptr->ehrmsb) + showAverage(df2_ptr->ehrlsb));

449 avg_ptr->spo2 = showAverage(df2_ptr->spo2);

450 avg_ptr->spo2d = showAverage(df2_ptr->spo2d);

451 avg_ptr->spo2fast = showAverage(df2_ptr->spo2fast);

452 avg_ptr->spo2b = showAverage(df2_ptr->spo2b);

453 avg_ptr->espo2 = showAverage(df2_ptr->espo2);

454 avg_ptr->espo2d = showAverage(df2_ptr->espo2d);

455 } else {

456 return NULL_POINTER;

457 }

458
459 return SENSOR_OK;

460 }

461
462 uData8 getHR(void){

463
464 if (avg_ptr !=NULL)

465 return avg_ptr->hr; /* Provide the HR value in standard mode */

466 else

467 return NULL_POINTER;

468 }

469
470 uData8 getHRD(void){

471
472 if (avg_ptr !=NULL)

473 return avg_ptr->hrd; /* Provide the HR value in display mode */

474 else

475 return NULL_POINTER;

476
477 }

478
479 uData8 getEHRD(void){

480
481 if (avg_ptr !=NULL)

482 return avg_ptr->ehrd; /* Provide the EHRD value in display mode */

483 else

484 return NULL_POINTER;

485 }

486
487 uData8 getEHR(void){

488
489 if (avg_ptr !=NULL)

490 return avg_ptr->ehr; /* Provide the EHR value in standard mode */

491 else

492 return NULL_POINTER;

493 }

494
495 uData8 getSpO2(void){

496
497 if (avg_ptr !=NULL)

498 return avg_ptr->spo2; /* Provide the SpO2 value in standard mode */

499 else

500 return NULL_POINTER;

501 }

502
503 uData8 getSpO2D(void){

504
505 if (avg_ptr !=NULL)

506 return avg_ptr->spo2d; /* Provide the SpO2 value in display mode */

507 else

508 return NULL_POINTER;

509 }

510
511 uData8 getSpO2Fast(void){

512
513 if (avg_ptr !=NULL)

514 return avg_ptr->spo2fast; /* Provide the SpO2 Fast value in standard mode */

515 else

516 return NULL_POINTER;

517 }

518
519 uData8 getSpO2B(void){

520
521 if (avg_ptr !=NULL)

522 return avg_ptr->spo2b; /* Provide the SpO2B-B value in standard mode */
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523 else

524 return NULL_POINTER;

525 }

526
527 uData8 getESpO2(void){

528
529 if (avg_ptr !=NULL)

530 return avg_ptr->espo2; /* Provide the ESpO2 value in standard mode */

531 else

532 return NULL_POINTER;

533 }

534
535 uData8 getESpO2D(void){

536
537 if (avg_ptr!=NULL)

538 return avg_ptr->espo2d; /* Provide the ESpO2D value in standard mode */

539 else

540 return NULL_POINTER;

541 }

542
543 uData8 getSREV(void){

544
545 return srev; /* Provide the firmware version */

546
547 }

548
549
550 #if (TARGET)

551 bit IsOutofTrack(){

552
553 return OutofTrack; /* indicates if the sensor is out of track or not */

554
555 }

556
557 bit IsSensorDisconnected(void){

558
559 return sf_ptr->snsd;

560
561 }

562
563 #else

564
565 uData8 IsOutofTrack(){

566
567 return OutofTrack; /* indicates if the sensor is out of track or not */

568
569 }

570
571 uData8 IsSensorDisconnected(void){

572
573 if (sf_ptr != NULL)

574 return sf_ptr->snsd;

575 else

576 return NULL_POINTER;

577
578 }

579
580 #endif

LISTING A.12: Source code for Pulse Oximeter file pulse/drivers/sensor.c

1 /*********************************************************
2 * File: sensor.h

3 * Abstract: Interface of the sensor driver

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9 #ifndef _SENSOR_H

10 #define _SENSOR_H

11
12 /*******************
13 * INCLUDE FILES *
14 ********************/

15 #include "global.h"

16
17 /*******************
18 * EXPORTED MACROS *
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19 ********************/

20 #define ELEMEN 3 /* define the number of elements in the sensor data array */

21 #define MAXNUMOFBYTE (125)

22 #define VALIDDATA (1)

23 #define SIZEOFFRAME (5)

24 #define INV (-1)

25 #define SENSOR_OK (1)

26
27 /*********************
28 * EXPORTED TYPEDEFS *
29 **********************/

30 typedef int Data8;

31 typedef unsigned int uData8;

32
33 /*********************
34 * ENUMERATIONS *
35 **********************/

36 /* This enum defines the position of the sensor data in the packets */

37 enum sensorPosition {posStatus=1, posPleth=2, posHRMSB=3, posCHKSUM=4, posHRLSB=8,

38 posSpO2=13, posREV=18, posSpO2D=43, posSpO2Fast=48,

39 posSpO2BB=53, posEHRMSB=68, posEHRLSB=73, posESpO2=78,

40 posESpO2D=83, posHRDMSB=98, posHRDLSB=103,

41 posEHRDMSB=108, posEHRDLSB=113};

42
43 enum sensorStatus {SYNC=0x01, GPRF=0x02, RPRF=0x03, YPRF=0x07, SNSA=0x08,

44 OOT=0x10, ARTF=0x20, SNSD=0x40, SBIT7=0x80};

45
46
47 /******************************************************************
48 * EXTERNAL STRUCTS *
49 *******************************************************************/

50 /* Standard: SpO2 and HR updated on every pulse beat. */

51 /* Display: SpO2 and HR updated every 1.5 seconds. */

52
53 struct dataFormat{

54
55 Data8 hrmsb[ELEMEN]; /* 4-beat average values in standard mode (MSB). */

56 Data8 hrlsb[ELEMEN]; /* 4-beat average values in standard mode (LSB). */

57 Data8 spo2[ELEMEN]; /* 4-beat average values in standard mode. */

58 Data8 spo2d[ELEMEN]; /* 4-beat average displayed values in display mode */

59 Data8 spo2fast[ELEMEN]; /* Non-slew limited saturation with 4-beat averaging in standard mode. */

60 Data8 spo2b[ELEMEN]; /* Un-averaged, non-slew limited, beat to beat value in standard mode. */

61 Data8 ehrmsb[ELEMEN]; /* 8-beat average values in standard mode. */

62 Data8 ehrlsb[ELEMEN]; /* 8-beat average values in standard mode. */

63 Data8 espo2[ELEMEN]; /* 8-beat average values in standard mode. */

64 Data8 hrdmsb[ELEMEN]; /* 4-beat average displayed values in display mode (MSB) */

65 Data8 hrdlsb[ELEMEN]; /* 4-beat average displayed values in display mode (LSB) */

66 Data8 ehrdmsb[ELEMEN]; /* 8-beat average displayed values in display mode (MSB) */

67 Data8 ehrdlsb[ELEMEN]; /* 8-beat average displayed values in display mode (LSB) */

68 Data8 espo2d[ELEMEN]; /* 8-beat average displayed values in display mode */

69
70 } df2;

71
72
73 struct sensorAvgVal{

74
75 Data8 hr;

76 Data8 spo2;

77 Data8 spo2d;

78 Data8 spo2fast;

79 Data8 spo2b;

80 Data8 ehr;

81 Data8 espo2;

82 Data8 hrd;

83 Data8 ehrd;

84 Data8 espo2d;

85
86 } avg;

87
88 struct statusFormat{

89
90 #if (TARGET)

91 bit sync;

92 bit gprf;

93 bit rprf;

94 bit yprf;

95 bit snsa;

96 bit oot;

97 bit artf;

98 bit snsd;
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99 bit bit7;

100 #else

101 uData8 sync;

102 uData8 gprf;

103 uData8 rprf;

104 uData8 yprf;

105 uData8 snsa;

106 uData8 oot;

107 uData8 artf;

108 uData8 snsd;

109 uData8 bit7;

110 #endif

111 } sf;

112
113 struct dataFormat *df2_ptr;

114 struct statusFormat *sf_ptr;

115 struct sensorAvgVal *avg_ptr;

116
117 /********************************
118 * EXPORTED FUNCTIONS PROTOTYPES *
119 *********************************/

120 extern uData8 showAverage(Data8 sensorData[]);

121 extern uData8 getHR(void);

122 extern uData8 getHRD(void);

123 extern uData8 getEHRD(void);

124 extern uData8 getEHR(void);

125 extern uData8 getSpO2(void);

126 extern uData8 getSpO2D(void);

127 extern uData8 getSpO2Fast(void);

128 extern uData8 getSpO2B(void);

129 extern uData8 getESpO2(void);

130 extern uData8 getESpO2D(void);

131 extern uData8 getSREV(void);

132 extern uData8 checkValidBytes(Data8 *chBytes);

133 extern uData8 signalInverter(Data8 signal);

134 extern void initSensor(void);

135 extern uData8 setSensorData(void);

136 extern uData8 checkStatus(void);

137
138 #if (TARGET)

139 bit IsOutofTrack(void);

140 bit IsSensorDisconnected(void);

141 bit IsSensorAlarmOn(void);

142 #else

143 extern uData8 IsOutofTrack(void);

144 extern uData8 IsSensorDisconnected(void);

145 extern uData8 IsSensorAlarmOn(void);

146 #endif

147
148 extern void collectData(Data8 sensorData);

149 extern void initStatus(void);

150 extern void printValue(void);

151
152 #endif /* _SENSOR_H */

LISTING A.13: Source code for Pulse Oximeter file pulse/drivers/sensor.h

1 /*********************************************************
2 * File: serial.c

3 * Abstract: Implementation of the serial driver

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 /***********************************************
11 * INCLUDE FILES *
12 ************************************************/

13 #include "serial.h"

14
15 #define OC8051_RST_SCON 0x00 // serial control

16 #define OC8051_SFR_SCON 0x98 // serial control 0

17 #define OC8051_SFR_B_SCON 0x13 // serial control

18
19 /******************************************************************
20 * FUNCTION PROTOTYPES *
21 *******************************************************************/

22 static void Comm(void);
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23 void next_timeframe(); /* Next Timeframe */

24
25 /******************************************************************
26 * EXTERN DATA *
27 *******************************************************************/

28 extern const unsigned int bound; /* Unwinding Bound */

29
30 /******************************************************************
31 * STATIC DATA *
32 *******************************************************************/

33 static char sensorword; /* Array with receicved bytes */

34 static uData8 cont=0; /* Count received bytes */

35
36 /******************************************************************
37 * EXTERN STRUCTS *
38 *******************************************************************/

39
40 extern const struct module_oc8051_uart oc8051_uart;

41 extern const struct module_oc8051_tc oc8051_tc;

42 extern const struct module_oc8051_int oc8051_int;

43
44 /*******************************************************************************
45 * FUNCTION IMPLEMENTATION *
46 ********************************************************************************/

47 uData8 calculateTimerVal(uData8 BR){

48
49 Data8 timerVal=-1;

50
51 switch(BR){

52
53 case br1200:

54 timerVal = reg1200;

55 break;

56 case br2400:

57 timerVal = reg2400;

58 break;

59 case br9600:

60 timerVal = reg9600;

61 break;

62 case br19200:

63 timerVal = reg19200;

64 break;

65 }

66
67 return timerVal;

68
69 }

70
71 /**
72 * @brief configure the serial port to the

73 * baud rate passed in the function call,

74 * no parity, no flow control, stop bits equal to 1,

75 * and data bits equal to 8.

76 */

77 void serial_init(uData8 baudRate){

78
79 int cycle;

80 unsigned char scon_test,wr_addr_bit;

81
82 #if (TARGET)

83
84 SCON = 0x50; /* SCON mode 1, 8-bit UART */

85 TMOD = 0x20; /* TMOD: timer 1, mode 2, 8-bit automatic reload */

86 TR1 = 1; /* TR1: enable timer 1 */

87 IE = 0x90; /* enable serial interruption */

88 TH1 = calculateTimerVal(baudRate);

89
90 #endif

91
92 #if (VERIFICATION)

93
94 __CPROVER_assume(oc8051_uart.scon=0x50);

95 __CPROVER_assume(oc8051_tc.tmod=0x20);

96 __CPROVER_assume(oc8051_int.tr1=1);

97 __CPROVER_assume(oc8051_int.ie=0x90);

98 __CPROVER_assume(oc8051_tc.th1 =calculateTimerVal(baudRate));

99 __CPROVER_assume(oc8051_uart.rst==1);

100
101 wr_addr_bit = oc8051_uart.wr_addr&0x07;

102
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103 for(cycle=0; cycle<bound; cycle++) {

104 if (oc8051_uart.rst) {

105 scon_test = OC8051_RST_SCON;

106 } else if ((oc8051_uart.wr) && !(oc8051_uart.wr_bit) && (oc8051_uart.wr_addr==OC8051_SFR_SCON)) {

107 scon_test = oc8051_uart.data_in;

108 } else if ((oc8051_uart.wr) && (oc8051_uart.wr_bit) && (((oc8051_uart.wr_addr&0xF8)>>3)==OC8051_SFR_B_SCON)) {

109 scon_test = oc8051_uart.bit_in;

110 } else if (oc8051_uart.tx_done) {

111 scon_test = scon_test|0x02;

112 } else if (!oc8051_uart.rx_done) {

113 if ((oc8051_uart.scon&0xC0) == 0x00) {

114 scon_test = scon_test|0x01;

115 } else if ((oc8051_uart.sbuf_rxd_tmp[11]) || !(oc8051_uart.scon&0x20)) {

116 scon_test = scon_test|0x01;

117 scon_test = (scon_test|((scon_test&0x40)&oc8051_uart.sbuf_rxd_tmp[11]));

118 } else {

119 scon_test = (scon_test|((scon_test&0x40)&oc8051_uart.sbuf_rxd_tmp[11]));

120 }

121 }

122 next_timeframe();

123 assert(oc8051_uart.scon==(scon_test&0xFF));

124 }

125
126 assert(oc8051_tc.tmod==0x20);

127 assert(oc8051_int.tr1==1);

128 assert(oc8051_int.ie==0x90);

129
130 #endif

131
132
133 }

134
135 /**
136 * @brief serial interruption. This is called if there are sensor

137 * data available in the serial port.

138 */

139
140 #if (TARGET)

141 static void Comm(void) interrupt 4 { /* Routine to handle the serial interruption */

142 if (RI){

143 RI=0; /* set the received flag */

144 sensorword=SBUF; /* read buffer that contains the sensor data */

145 collectData(sensorword);

146 }

147
148
149 }

150 #endif

151
152 #if (VERIFICATION)

153 static void Comm(void) { /* Routine to handle the serial interruption */

154
155 if (oc8051_uart.ri){

156 oc8051_uart.ri=0; /* set the received flag */

157 sensorword=oc8051_uart.sbuf; /* read buffer that contains the sensor data */

158 collectData(sensorword);

159 assert(oc8051_uart.ri==0);

160 }

161 }

162 #endif

LISTING A.14: Source code for Pulse Oximeter file pulse/drivers/serial.c

1 /*********************************************************
2 * File: serial.h

3 * Abstract: Interface of the serial driver

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 #ifndef _SERIAL_H

11 #define _SERIAL_H

12
13 /*******************
14 * INCLUDE FILES *
15 ********************/

16 #include "global.h"
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17 #include "sensor.h"

18
19 #if (TARGET)

20 #include <8051.h>

21 #endif

22
23 /********************************
24 * ENUMERATIONS *
25 *********************************/

26 /**
27 * @brief indicate the baud rates that can be set.

28 */

29 enum BaudRateT {br1200=1200, br2400=2400, br9600=9600,

30 br19200=19200};

31
32 /**
33 * @brief provide the register value for each baud rate.

34 */

35 enum BaudRateReg {reg1200=0xE8, reg2400=0xF4,

36 reg9600=0xFD, reg19200=0xFD};

37
38
39 /********************************
40 * EXPORTED FUNCTIONS PROTOTYPES *
41 *********************************/

42 /**
43 * @brief Function used to initialize the serial communication

44 *
45 * @retval void

46 */

47 extern void serial_init(uData8 baudRate);

48
49 /**
50 * @brief Function used to calculate the value of the TH01 register

51 *
52 * @retval The register value of the baud rate

53 */

54 extern uData8 calculateTimerVal(uData8 baudRate);

55 #endif /* _SERIAL_H */

LISTING A.15: Source code for Pulse Oximeter file pulse/drivers/serial.h

1 /*********************************************************
2 * File: timer.c

3 * Abstract: Implementation of the timer

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 /***********************************************
11 * INCLUDE FILES *
12 ************************************************/

13 #include "timer.h"

14
15 /***********************************************
16 * LOCAL MACROS *
17 ************************************************/

18 #define THIGH (0x3C)

19 #define TLOW (0xAF)

20 #define MAXCOUNTER (65535)

21 #define TC (1000)

22 #define MASKMSB (0xFF00)

23 #define MASKLSB (0x00FF)

24 #define ONESECOND (20)

25 #define SECOND (1000)

26
27 /******************************************************************
28 * VERILOG EXTERN STRUCTS *
29 *******************************************************************/

30
31 extern const struct module_oc8051_int oc8051_int;

32 extern const struct module_oc8051_tc oc8051_tc;

33
34
35 extern const struct module_DW8051_intr_1 DW8051_intr_1;

36 extern const struct module_DW8051_intr_0 DW8051_intr_0;

37 extern const struct module_DW8051_timer DW8051_timer;
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38
39 /******************************************************************
40 * STATIC FUNCTION PROTOTYPES *
41 *******************************************************************/

42 static void system_tick(void);

43 void next_timeframe();

44
45 /******************************************************************
46 * EXTERN DATA *
47 *******************************************************************/

48 extern const unsigned int bound; /* Unwinding Bound */

49
50 /******************************************************************
51 * STATIC DATA *
52 *******************************************************************/

53 static uData8 count_ticks, ticks, tms;

54
55 /*******************************************************************************
56 * FUNCTION IMPLEMENTATION *
57 ********************************************************************************/

58 void initTimers(void) {

59 count_ticks=0;

60 ticks=0;

61 tms=0;

62 }

63
64 uData8 calculateTRegVal(uData8 t) {

65
66 uData8 tms;

67
68 if ((t*TC) < MAXCOUNTER )

69 tms = MAXCOUNTER - (t*TC);

70 else

71 tms = 0;

72
73 #if VERIFICATION

74 assert(tms>=0);

75 #endif

76
77 return tms;

78 }

79
80 #if 0

81 bug

82 uData8 calculateTRegVal(uData8 t) {

83
84 uData8 tms;

85
86 tms = MAXCOUNTER - (t*TC);

87
88 return tms;

89 }

90 #endif

91
92 uData8 calculateTH(uData8 t) {

93
94 uData8 tReg, result;

95
96 tReg = calculateTRegVal(t);

97 result = ((tReg&MASKMSB) >> 8);

98
99 #if VERIFICATION

100 assert(result>=0);

101 #endif

102
103 return result;

104
105 }

106
107 uData8 calculateTL(uData8 t) {

108
109 uData8 tReg, result;

110
111 tReg = calculateTRegVal(t);

112 result = tReg&MASKLSB;

113
114 #if VERIFICATION

115 assert(result>=0);

116 #endif

117
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118 return result;

119 }

120
121 /**
122 * @brief configure the timer according to the parameter passed

123 * in the function call. The time parameter must be in the range

124 * of 1 ms to 50ms.

125 */

126 Data8 initTimer0ms(uData8 time_ms) {

127
128 int cycle;

129
130 tms=time_ms;

131
132 #if (TARGET)

133 EA = 0; /* disable all interruptions (IE register) */

134 TR0 = 0; /* stop timer0 (TCON register) */

135 TMOD = (TMOD&0xF0)|0x01; /* timer0 mode 1 (TMOD register) */

136 TH0 = calculateTH(time_ms); /* load TH0 with high order byte (TH) */

137 TL0 = calculateTL(time_ms); /* load TL0 with low order byte (TLO) */

138 TR0 = 1; /* enable counter of timer0 (TCON register) */

139 ET0 = 1; /* enable interruption of timer0 (IE register) */

140 EA = 1; /* enable all interruptions (IE register) */

141 #endif

142
143 #if (VERIFICATION)

144 __CPROVER_assume(oc8051_int.ie==(oc8051_int.ie&0x7F));

145 __CPROVER_assume(oc8051_int.tr0==0);

146 __CPROVER_assume(oc8051_tc.tmod==((oc8051_tc.tmod&0xF0)|0x01));

147 __CPROVER_assume(oc8051_tc.th0==calculateTH(time_ms));

148 __CPROVER_assume(oc8051_tc.tl0==calculateTL(time_ms));

149 __CPROVER_assume(oc8051_tc.tr0==1);

150 __CPROVER_assume(oc8051_int.ie==(oc8051_int.ie|0x02));

151 __CPROVER_assume(oc8051_int.ie==(oc8051_int.ie|0x80));

152
153 for(cycle=0; cycle<bound; cycle++) {

154 __CPROVER_assume(oc8051_tc.rst==0);

155 next_timeframe();

156 }

157
158 assert(oc8051_tc.th0==calculateTH(time_ms));

159 assert(oc8051_tc.tl0==calculateTL(time_ms));

160 assert((oc8051_tc.tmod&0x01)==0x01);

161 assert((oc8051_int.ie&0x82)==0x82);

162 assert(oc8051_tc.tr0==1);

163 #endif

164
165 return (tms <= 0) ? -1:tms;

166 }

167
168 /**
169 * @brief configure the timer in scale of seconds.

170 *
171 */

172 Data8 initTimer0s(uData8 time_s) {

173
174 if (tms==0) {

175 initTimer0ms(50);

176 ticks = (time_s*ONESECOND);

177 } else if (tms>0){

178 ticks = (time_s*(SECOND/tms));

179 }

180
181 return (ticks<0) ? -1:ticks;

182
183 }

184
185 #if 0

186 bug

187 Data8 initTimer0s(uData8 time_s) {

188
189 if (tms==0) {

190 initTimer0ms(50);

191 ticks = (time_s*ONESECOND);

192 } else {

193 ticks = (time_s*(SECOND/tms));

194 }

195
196 return (ticks<0) ? -1:ticks;

197
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198 }

199 #endif

200
201 /**
202 * @brief deactivate the timer and check if the count_ticks

203 * variable has already expired. If it expried, i.e.

204 * it elapsed one second then it calls the printValue()

205 * in order to print the sensor data.

206 */

207
208 #if (TARGET)

209 static void system_tick(void) interrupt 1

210 {

211 TR0 = 0; /* stop timer0 (TCON register) */

212 TH0 = THIGH;

213 TL0 = TLOW;

214 timerms_interrupt();

215 if (count_ticks++ == ticks){ /* checks if one second has expired */

216
217 count_ticks=0;

218 timers_interrupt();

219
220 }

221
222 TR0 = 1; /* enable timer0 count (TCON register) */

223
224 }

225 #endif

226
227 #if (VERIFICATION)

228 static void system_tick(void)

229 {

230 int cycle;

231
232 __CPROVER_assume(oc8051_tc.rst==1);

233
234 __CPROVER_assume(oc8051_tc.tr0 == 0); /* stop timer0 (TCON register) */

235 __CPROVER_assume(oc8051_tc.th0==THIGH);

236 __CPROVER_assume(oc8051_tc.tl0==TLOW);

237 timerms_interrupt();

238
239 if (count_ticks++ == ticks){ /* checks if one second has expired */

240 count_ticks=0;

241 timers_interrupt();

242 }

243
244 oc8051_tc.tr0 = 1; /* enable timer0 count (TCON register) */

245
246 for(cycle=0; cycle<bound; cycle++) {

247 __CPROVER_assume(oc8051_tc.rst==0);

248 next_timeframe();

249 }

250 assert(oc8051_tc.th0 == THIGH);

251 assert(oc8051_tc.tl0 == TLOW);

252 assert(oc8051_tc.tr0==1);

253
254 }

255 #endif

LISTING A.16: Source code for Pulse Oximeter file pulse/drivers/timer.c

1 /*********************************************************
2 * File: timer.h

3 * Abstract: Interface of the timer

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 #ifndef _TIMER_H

11 #define _TIMER_H

12
13 /*******************
14 * INCLUDE FILES *
15 ********************/

16 #include "global.h"

17 #include "sensor.h"

18
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19 #if (TARGET)

20 #include <8051.h>

21 #endif

22
23 /********************************
24 * EXPORTED FUNCTIONS PROTOTYPES *
25 *********************************/

26 /**
27 * @brief Function used to configure the timer in miliseconds.

28 *
29 * @retval The time in miliseconds.

30 */

31 extern Data8 initTimer0ms(uData8 time_ms);

32
33 /**
34 * @brief Function used to configure the timer in seconds.

35 *
36 * @retval The time in seconds. Otherwise, -1 is returned.

37 */

38 extern Data8 initTimer0s(uData8 time_s);

39
40 /**
41 * @brief Function used to calculate the timer register value

42 *
43 * @retval The timer register value

44 */

45 extern uData8 calculateTRegVal(uData8 t);

46
47 /**
48 * @brief Function used to calculate the timer high order byte

49 *
50 * @retval The timer high order byte

51 */

52 extern uData8 calculateTH(uData8 t);

53
54 /**
55 * @brief Function used to calculate the timer low order byte

56 *
57 * @retval The timer low order byte

58 */

59 extern uData8 calculateTL(uData8 t);

60
61 /**
62 * @brief Procedure that is called according to the timer ticks

63 *
64 * @retval void

65 */

66 extern void timers_interrupt(void);

67
68 /**
69 * @brief Procedure that is called according to the timer ticks

70 *
71 * @retval void

72 */

73 extern void timerms_interrupt(void);

74
75 /**
76 * @brief Procedure to initialize the timer

77 *
78 * @retval void

79 */

80 extern void initTimers(void);

81
82 #endif /* _TIMER_H */

LISTING A.17: Source code for Pulse Oximeter file pulse/drivers/timer.h

1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

2 ; File: LCD.a51

3 ; Abstract: Functions to access the LCD in Assembly

4 ; Platform: AT89S8252

5 ; Project Pulse Oximeter

6 ; Author(s): Lucas Cordeiro

7 ; Copyright (C)2007 DCC, Federal University of Amazonas

8 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

9
10 .globl _write2lcd_PARM_1

11 .globl _write2lcd

12
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13 _write2lcd_PARM_1:

14 .ds 1

15 .area CSEG

16
17 _write2lcd:

18 mov a,dpl

19 lcall wrcar1

20 RET

21
22 wrcar1:

23 push DPH

24 push DPL

25
26 mov DPTR,#0x8001

27 movx @DPTR,A

28 lcall t5ms

29
30 pop DPL

31 pop DPH

32 ret

33
34 t5ms:

35 MOV TL0,#0xdf

36 MOV TH0,#0xb1

37 SETB TR0

38 ; JNB TF0,$

39 CLR TR0

40 CLR TF0

41 RET

42
43 ; END OF _write2lcd

LISTING A.18: Source code for Pulse Oximeter file pulse/drivers/write2lcd.asm

1 /*********************************************************
2 * File: buffer.c

3 * Abstract: Implementation of the log system

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 /***********************************************
11 * INCLUDE FILES *
12 ************************************************/

13 #include<string.h>

14 #include "log.h"

15
16 /***********************************************
17 * LOCAL MACROS *
18 ************************************************/

19 #define BUFFER_MAX 6400

20
21 /******************************************************************
22 * STATIC DATA *
23 *******************************************************************/

24 static char buffer[BUFFER_MAX]; /* BUFFER */

25
26 /*******************************************************************************
27 * FUNCTION IMPLEMENTATION *
28 ********************************************************************************/

29 void initLog(Data8 max) {

30
31 buffer_size = max;

32 first = next = 0;

33 }

34
35 Data8 removeLogElement(void) {

36
37 #if VERIFICATION

38 assert(first>=0);

39 #endif

40
41 if (next >= 0 && first < buffer_size) {

42 first++;

43 return buffer[first-1];

44 }

45 else {
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46 return LOGERROR;

47 }

48 }

49
50 #if 0

51 bug

52 Data8 removeLogElement(void) {

53
54 first++;

55 return buffer[first-1];

56 }

57 #endif

58
59 Data8 insertLogElement(Data8 b) {

60
61 if (next < buffer_size & buffer_size > 0) {

62 buffer[next] = b;

63 next = (next+1)%buffer_size;

64 #if VERIFICATION

65 assert(next<buffer_size);

66 #endif

67 } else {

68 return LOGERROR;

69 }

70
71 return b;

72 }

73
74 #if 0

75 bug

76 void insertLogElement(Data8 b) {

77
78 buffer[next] = b;

79 next = (next+1)%buffer_size;

80 }

81 #endif

82
83 void logm(char *msg) {

84
85 size_t size;

86 int i;

87
88 if (msg!=NULL) {

89 size = strlen(msg);

90 #if VERIFICATION

91 assert(size>=0);

92 #endif

93 }

94
95 for(i=0; i<size; i++){

96 insertLogElement(msg[i]);

97 }

98
99 }

100
101 Data8 getBufferSize(void) {

102
103 if (buffer[0]!=’\0’) {

104 #if VERIFICATION

105 assert(strlen(buffer)>=0);

106 #endif

107 return strlen(buffer);

108 }

109
110 }

111
112 Data8 sendLog2PC(void) {

113
114 uData8 i, err=0;

115 size_t bsize;

116
117 if (buffer[0]!=’\0’)

118 bsize = strlen(buffer);

119
120 if (bsize<=0){

121 err=-1;

122 }

123
124 for(i=0; i<bsize; i++){

125 #if (TARGET)
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126 SBUF=buffer[i];

127 while(TI==0);

128 TI=0;

129 #endif

130 logTransferProgress();

131 }

132
133 return err;

134 }

LISTING A.19: Source code for Pulse Oximeter file pulse/utils/log.c

1 /*********************************************************
2 * File: log.h

3 * Abstract: Interface of the log system

4 * Platform: AT89S8252

5 * Project Pulse Oximeter

6 * Author(s): Lucas Cordeiro

7 * Copyright (C)2007 DCC, Federal University of Amazonas

8 *********************************************************/

9
10 #ifndef _LOG_H

11 #define _LOG_H

12
13 /*******************
14 * INCLUDE FILES *
15 ********************/

16 #include "../drivers/global.h"

17 #include "../drivers/sensor.h"

18
19 /*******************
20 * EXPORTED MACROS *
21 ********************/

22 #define TOKEN (#)

23
24 #ifdef DEBUG

25 #define debug(parms...) logm(parms);

26 #else

27 #define debug(parms...)

28 #endif

29
30 #define LOGERROR 100

31
32 static uData8 first; /* Pointer to the input buffer */

33 static uData8 next; /* Pointer to the output pointer */

34 static Data8 buffer_size; /* Max amount of elements in the buffer */

35
36 /********************************
37 * EXPORTED FUNCTIONS PROTOTYPES *
38 *********************************/

39 /**
40 * @brief Procedure used to set the amount of elements in the buffer

41 * and initializes the input and output pointers.

42 *
43 * @retval void

44 */

45 extern void initLog(Data8);

46
47 /**
48 * @brief Procedure used to remove the current element pointed

49 * by the output pointer. It just increments the output

50 * pointer.

51 *
52 * @retval The buffer element.

53 */

54 extern Data8 removeLogElement(void);

55
56 /**
57 * @brief Procedure used to insert an element into the position

58 * pointed by the input pointer and increments the input

59 * pointer.

60 *
61 * @retval void

62 */

63 extern Data8 insertLogElement(Data8);

64
65 /**
66 * @brief Procedure used to write in the circular buffer

67 *
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68 * @retval void

69 */

70 extern void logm(char *msg);

71
72 /**
73 * @brief Function used to send the log messages to the PC

74 *
75 * @retval This function returns 0 if the log is sent successfully.

76 * If an error occurs then -1 is returned.

77 */

78 extern Data8 sendLog2PC(void);

79
80 /**
81 * @brief Function used to get the buffer size of the log messages

82 *
83 * @retval The length of string

84 */

85 extern Data8 getBufferSize(void);

86
87 /**
88 * @brief Procedure used to provide the status of transferring

89 * the log messages to the PC.

90 *
91 * @retval The progress of the transferring operation.

92 */

93 extern uData8 logTransferProgress(void);

94
95 #endif /* _LOG_H */

LISTING A.20: Source code for Pulse Oximeter file pulse/utils/log.h

A.3 Pulse Oximiter test harnesses and patches

This section contains the test harnesses used to invoke different portions of the Pulse Oximeter

software, to generate a trace for checking against an LTL formula. It is assumed that a monitor

function and associated helpers have already been generated for the formula, producing code as

exhibited in Listing A.1. I also list here any modifications made to the code base for running the

test, including those modifications to deliberately cause the formula to not hold.

A.3.1 baud conf

Formula: G({brate == 1200} =⇒ F{TH1 == 0xE8})
1 #include <pthread.h>

2 #include <stdbool.h>

3
4 #include "serial.h"

5
6 void serial_init(int);

7 int nondet_int();

8 int nondet_uint();

9 bool nondet_bool();

10
11 int event_thread_done = 0;

12
13 void ltl2ba_start_monitor();

14 void ltl2ba_finish_monitor();

15
16 void *
17 event_thread(void *unused)

18 {

19 int conf, i;

20
21 while (1) {
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22 conf = nondet_int();

23 serial_init(conf);

24 }

25
26 event_thread_done = 1;

27 return NULL;

28 }

29
30 int

31 main(int argc, char **argv)

32 {

33 pthread_t evt_loop;

34
35 ltl2ba_start_monitor();

36 pthread_create(&evt_loop, NULL, event_thread, NULL);

37 __ESBMC_assume(event_thread_done != 0);

38 ltl2ba_finish_monitor();

39
40 return 0;

41 }

LISTING A.21: Test harness for baud conf LTL property

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl ./drivers/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./drivers/ltl 2011-04-18 22:17:20.587406271 +0100

4 @@ -0,0 +1 @@

5 +![]({brate == 1200} -> <>{TH1 == 0xE8})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/serial.c ./drivers/serial.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/serial.c 2009-01-17 16:27:49.000000000 +0000

8 +++ ./drivers/serial.c 2011-04-18 22:07:33.696110432 +0100

9 @@ -41,6 +41,10 @@ extern const struct module_oc8051_uart o

10 extern const struct module_oc8051_tc oc8051_tc;

11 extern const struct module_oc8051_int oc8051_int;

12
13 +#include <stdbool.h>

14 +int TH1; /* Model config register */

15 +int brate; /* Stored config val */

16 +

17 /*******************************************************************************
18 * FUNCTION IMPLEMENTATION *
19 ********************************************************************************/

20 @@ -78,17 +82,25 @@ void serial_init(uData8 baudRate){

21
22 int cycle;

23 unsigned char scon_test,wr_addr_bit;

24 + uData8 ret;

25
26 -#if (TARGET)

27 +brate = baudRate;

28
29 +//#if (TARGET)

30 +#if 0

31 SCON = 0x50; /* SCON mode 1, 8-bit UART */

32 TMOD = 0x20; /* TMOD: timer 1, mode 2, 8-bit automatic reload */

33 TR1 = 1; /* TR1: enable timer 1 */

34 IE = 0x90; /* enable serial interruption */

35 - TH1 = calculateTimerVal(baudRate);

36 -

37 #endif

38 +// TH1 = calculateTimerVal(baudRate);

39 + ret = calculateTimerVal(baudRate);

40 +TH1 = ret;

41
42 +return;

43 +

44 +

45 +#if 0

46 #if (VERIFICATION)

47
48 __CPROVER_assume(oc8051_uart.scon=0x50);

49 @@ -128,6 +140,7 @@ void serial_init(uData8 baudRate){

50 assert(oc8051_int.ie==0x90);

51
52 #endif

53 +#endif

54
55
56 }
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LISTING A.22: Patch applied when verifying the baud conf property holds

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl ./drivers/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./drivers/ltl 2011-04-18 22:19:29.985311973 +0100

4 @@ -0,0 +1 @@

5 +![]({brate == 1200} -> <>{TH1 == 0xE8})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/serial.c ./drivers/serial.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/serial.c 2009-01-17 16:27:49.000000000 +0000

8 +++ ./drivers/serial.c 2011-04-18 22:19:56.923626811 +0100

9 @@ -41,6 +41,10 @@ extern const struct module_oc8051_uart o

10 extern const struct module_oc8051_tc oc8051_tc;

11 extern const struct module_oc8051_int oc8051_int;

12
13 +#include <stdbool.h>

14 +int TH1; /* Model config register */

15 +int brate; /* Stored config val */

16 +

17 /*******************************************************************************
18 * FUNCTION IMPLEMENTATION *
19 ********************************************************************************/

20 @@ -52,7 +56,7 @@ uData8 calculateTimerVal(uData8 BR){

21
22 case br1200:

23 timerVal = reg1200;

24 - break;

25 +// break;

26 case br2400:

27 timerVal = reg2400;

28 break;

29 @@ -78,17 +82,25 @@ void serial_init(uData8 baudRate){

30
31 int cycle;

32 unsigned char scon_test,wr_addr_bit;

33 + uData8 ret;

34
35 -#if (TARGET)

36 +brate = baudRate;

37
38 +//#if (TARGET)

39 +#if 0

40 SCON = 0x50; /* SCON mode 1, 8-bit UART */

41 TMOD = 0x20; /* TMOD: timer 1, mode 2, 8-bit automatic reload */

42 TR1 = 1; /* TR1: enable timer 1 */

43 IE = 0x90; /* enable serial interruption */

44 - TH1 = calculateTimerVal(baudRate);

45 -

46 #endif

47 +// TH1 = calculateTimerVal(baudRate);

48 + ret = calculateTimerVal(baudRate);

49 +TH1 = ret;

50
51 +return;

52 +

53 +

54 +#if 0

55 #if (VERIFICATION)

56
57 __CPROVER_assume(oc8051_uart.scon=0x50);

58 @@ -128,6 +140,7 @@ void serial_init(uData8 baudRate){

59 assert(oc8051_int.ie==0x90);

60
61 #endif

62 +#endif

63
64
65 }

LISTING A.23: Patch applied to inject a bug that violates the baud conf property
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A.3.2 keyb start

Formula: G({the key == 1} =⇒ F{command == 1})
1 #include <pthread.h>

2 #include <stdbool.h>

3
4 #include "keyboard.h"

5
6 void initMenuApp(void);

7 void timerms_interrupt(void);

8 int nondet_uint();

9 bool nondet_bool();

10
11 int event_thread_done = 0;

12
13 void *
14 event_thread(void *unused)

15 {

16 int key;

17
18 while (1) {

19 key = nondet_int() % 8;

20 key = 1 << key;

21
22 checkPressedButton(key);

23 }

24
25 event_thread_done = 1;

26 pthread_exit(NULL);

27 }

28
29 int

30 main(int argc, char **argv)

31 {

32 pthread_t evt_loop;

33
34 initMenuApp();

35 ltl2ba_start_monitor();

36 pthread_create(&evt_loop, NULL, event_thread, NULL);

37 __ESBMC_assume(event_thread_done != 0);

38 ltl2ba_finish_monitor();

39
40 return 0;

41 }

LISTING A.24: Test harness for keyb start LTL property

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/keyboard.c ./drivers/keyboard.c

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/keyboard.c 2009-01-17 16:22:11.000000000 +0000

3 +++ ./drivers/keyboard.c 2011-04-18 22:45:12.122694746 +0100

4 @@ -21,10 +21,12 @@ enum Key_State {START=BIT0, STOP=BIT1, E

5 /*******************************************************************************
6 * FUNCTION IMPLEMENTATION *
7 ********************************************************************************/

8 +int the_key;

9 +int command=0;

10
11 Data8 checkPressedButton(uData8 Key){

12
13 - int command=0;

14 + the_key = Key;

15
16 switch(Key){

17
18 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl ./drivers/ltl

19 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl 1970-01-01 01:00:00.000000000 +0100

20 +++ ./drivers/ltl 2011-04-18 21:30:42.025332645 +0100

21 @@ -0,0 +1 @@

22 +![]({the_key == 1} -> <>{command == 1})

LISTING A.25: Patch applied when verifying the keyb start property holds

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/keyboard.c ./drivers/keyboard.c

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/keyboard.c 2009-01-17 16:22:11.000000000 +0000
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3 +++ ./drivers/keyboard.c 2011-04-18 22:50:38.572144877 +0100

4 @@ -21,14 +21,16 @@ enum Key_State {START=BIT0, STOP=BIT1, E

5 /*******************************************************************************
6 * FUNCTION IMPLEMENTATION *
7 ********************************************************************************/

8 +int the_key;

9 +int command=0;

10
11 Data8 checkPressedButton(uData8 Key){

12
13 - int command=0;

14 + the_key = Key;

15
16 switch(Key){

17
18 - case START: command=startButton; break;

19 + case START: command=startButton; // break;

20 case STOP: command=stopButton; break;

21 case UP: command=upButton; break;

22 case DOWN: command=downButton; break;

23 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl ./drivers/ltl

24 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl 1970-01-01 01:00:00.000000000 +0100

25 +++ ./drivers/ltl 2011-04-18 22:50:27.730827266 +0100

26 @@ -0,0 +1 @@

27 +![]({the_key == 1} -> <>{command == 1})

LISTING A.26: Patch applied to inject a bug that violates the keyb start property

A.3.3 serial rx

Formula: G(({p inDat == 1} ∨ {flag2 == 1}) =⇒ F{flag1 == 1})
1 #include <pthread.h>

2 #include <stdbool.h>

3
4 #include "serial.h"

5
6 extern bool p_contCHK2_condition, p_sensor_byte, q_flag1_on;

7
8 void serial_init(int);

9 void initSensor(void);

10 void initStatus(void);

11 void collectData(int sensorByte);

12 int nondet_int();

13 int nondet_uint();

14 bool nondet_bool();

15 void __ESBMC_atomic_begin();

16 void __ESBMC_atomic_end();

17
18 int event_thread_done = 0;

19
20 int p_sensorData;

21
22 void *
23 event_thread(void *unused)

24 {

25 int i;

26
27 while (1) {

28 p_sensorData = nondet_int();

29 collectData(p_sensorData);

30 }

31
32 event_thread_done = 1;

33 return NULL;

34 }

35
36 int

37 main(int argc, char **argv)

38 {

39 pthread_t evt_loop;

40
41 // initSensor(); /* Causes linking against nonexistant foo it seems */

42 initStatus();
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43
44 ltl2ba_start_monitor();

45 pthread_create(&evt_loop, NULL, event_thread, NULL);

46 __ESBMC_assume(event_thread_done != 0);

47 ltl2ba_finish_monitor();

48
49 return 0;

50 }

LISTING A.27: Test harness for serial rx LTL property

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl ./drivers/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./drivers/ltl 2011-04-19 11:16:36.764988737 +0100

4 @@ -0,0 +1 @@

5 +![]((({p_sensorData == 1} || {flag2 == 1})) -> <>{flag1 == 1})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/sensor.c ./drivers/sensor.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/sensor.c 2009-01-17 16:36:12.000000000 +0000

8 +++ ./drivers/sensor.c 2011-04-18 22:31:42.817460070 +0100

9 @@ -22,9 +22,10 @@ static void fillArrays(Data8 rawData, uD

10 * STATIC DATA *
11 *******************************************************************/

12 static Data8 itr=0, checkSum[SIZEOFFRAME];

13 -static uData8 contPos=0, contCHK=0, flag1=FALSE, flag2=FALSE, frame=0;

14 +uData8 contPos=0, contCHK=0, flag1=FALSE, flag2=FALSE, frame=0;

15 static char serialData[MAXNUMOFBYTE];

16 static char tmp[10];

17 static uData8 srev; /* Oximeter Firmware Revision Level */

18 @@ -106,6 +107,7 @@ void initStatus(void){

19 * this function sums three HR or SpO2 values and

20 * divides them by the amount was read.

21 */

22 +#if 0

23 uData8 showAverage(Data8 *sensorData){

24
25 Data8 i=0, sensorValue=0, numElements=0, aux=0;

26 @@ -132,6 +134,7 @@ uData8 showAverage(Data8 *sensorData){

27 return aux;

28
29 }

30 +#endif

31
32 uData8 signalInverter(Data8 signal) {

LISTING A.28: Patch applied when verifying the serial rx property holds

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl ./drivers/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./drivers/ltl 2011-04-19 11:17:27.926776024 +0100

4 @@ -0,0 +1 @@

5 +![]((({p_sensorData == 1} || {flag2 == 1})) -> <>{flag1 == 1})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/sensor.c ./drivers/sensor.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/drivers/sensor.c 2009-01-17 16:36:12.000000000 +0000

8 +++ ./drivers/sensor.c 2011-04-18 22:38:46.363952134 +0100

9 @@ -22,9 +22,10 @@ static void fillArrays(Data8 rawData, uD

10 * STATIC DATA *
11 *******************************************************************/

12 static Data8 itr=0, checkSum[SIZEOFFRAME];

13 -static uData8 contPos=0, contCHK=0, flag1=FALSE, flag2=FALSE, frame=0;

14 +uData8 contPos=0, contCHK=0, flag1=FALSE, flag2=FALSE, frame=0;

15 static char serialData[MAXNUMOFBYTE];

16 static char tmp[10];

17 static uData8 srev; /* Oximeter Firmware Revision Level */

18 @@ -106,6 +107,7 @@ void initStatus(void){

19 * this function sums three HR or SpO2 values and

20 * divides them by the amount was read.

21 */

22 +#if 0

23 uData8 showAverage(Data8 *sensorData){

24
25 Data8 i=0, sensorValue=0, numElements=0, aux=0;

26 @@ -132,6 +134,7 @@ uData8 showAverage(Data8 *sensorData){

27 return aux;

28
29 }

30 +#endif

31
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32 uData8 signalInverter(Data8 signal) {

33
34 @@ -177,6 +180,8 @@ uData8 checkValidBytes(Data8 *chBytes) {

35 * in an array that will be used further in order to fill in

36 * other arrays.

37 */

38 +#include <stdbool.h>

39 +bool nondet_bool();

40 void collectData(Data8 sensorByte) {

41
42 int chkerr, i;

43 @@ -200,7 +205,11 @@ void collectData(Data8 sensorByte) {

44 else if ((SYNC&sensorByte) == TRUE || flag1 == TRUE) {

45 checkSum[contCHK]=sensorByte;

46 contCHK++;

47 - } flag1=TRUE;

48 + if (nondet_bool())

49 + flag1=TRUE;

50 + else

51 + flag1 =FALSE;

52 + }

53 }

54 if(frame==3){

55 srev = checkSum[3];

LISTING A.29: Patch applied to inject a bug that violates the serial rx property

A.3.4 up btn

Formula: G(({press == 4} ∧ {mstate == 1}) =⇒ F{stime > refstime})
1 #include <pthread.h>

2 #include <stdbool.h>

3
4 #include "menu_app.h"

5
6 void initMenuApp(void);

7 void timerms_interrupt(void);

8 void setMstate(int s);

9
10 int event_loop_done = 0;

11 extern bool q_stimeHasIncreased;

12
13 extern unsigned int stime;

14 unsigned int ref_stime;

15
16 void *
17 event_thread(void *unused)

18 {

19 int i;

20
21 while (1) {

22 /* Set state to some arbitary situation */

23 setMstate(SETSAMPLETIME);

24
25 /* Then fire a few intrs */

26 /* Reset condition we’re checking whenever we send input*/

27 ref_stime = stime;

28 timerms_interrupt();

29
30 }

31
32 event_loop_done = 1;

33 return NULL;

34 }

35
36 int

37 main(int argc, char **argv)

38 {

39 pthread_t thread, evt_loop;

40
41 initMenuApp();

42 ltl2ba_start_monitor();

43 pthread_create(&evt_loop, NULL, event_thread, NULL);
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44 __ESBMC_assume(event_loop_done != 0);

45 ltl2ba_finish_monitor();

46
47 return 0;

48 }

LISTING A.30: Test harness for up btn LTL property

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl ./apps/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./apps/ltl 2011-04-18 16:00:46.743729860 +0100

4 @@ -0,0 +1 @@

5 +![](({pressed_key == 4} && {mstate == 1}) -> <>{stime > ref_stime})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c ./apps/menu_app.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c 2009-01-17 16:32:10.000000000 +0000

8 +++ ./apps/menu_app.c 2011-04-18 20:36:41.537972365 +0100

9 @@ -35,6 +35,7 @@

10 parm++; \

11 bounce=BOUNCEVAL; \

12 } else { \

13 +parm++; /* Disable debouncing for this test */ \

14 bounce--; \

15 if (bounce<0) { \

16 bounce=0; \

17 @@ -110,12 +111,16 @@ typedef struct {

18 /******************************************************************
19 * STATIC DATA *
20 *******************************************************************/

21 -static uData8 stime, elog, bounce, exists_log;

22 +uData8 stime, elog, bounce, exists_log;

23 static uData8 count_pos, count_elem, count, global_progress, unit_progress;

24 -static uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

25 +uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

26 showData show;

27 static char menuVal[10], opData[AMOUNTOFDATA];

28
29 +#include <stdbool.h>

30 +

31 /*******************************************************************************
32 * FUNCTION IMPLEMENTATION *
33 ********************************************************************************/

34 @@ -150,6 +155,13 @@ void initMenuApp (void) {

35 unit_progress=0;

36 }

37
38 +void setMstate(int s)

39 +{

40 +

41 + mstate = s;

42 + return;

43 +}

44 +

45 uData8 selectItem(void) {

46
47 if (enable_buttons) {

48 @@ -253,6 +265,7 @@ uData8 KeyUp(void) {

49 SETINC(stime);

50 result=stime;

51 break;

52 +#if 0

53 case SETLOG:

54 SETNEG(elog);

55 result=elog;

56 @@ -307,12 +320,15 @@ uData8 KeyUp(void) {

57 break;

58 default:

59 result=-1;

60 +#endif

61 }

62 }

63
64 +#if 0

65 #if VERIFICATION

66 assert(result>=0);

67 #endif

68 +#endif

69
70 return result;

71 }
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72 @@ -744,17 +760,20 @@ void timerms_interrupt(void){

73
74 #if (TARGET)

75 keys=P1;

76 + pressed_key = checkPressedButton(keys);

77 #endif

78
79 #if VERIFICATION

80 - assert(keys>=0);

81 + pressed_key = upButton;

82 + //assert(keys>=0);

83 #endif

84
85 - pressed_key = checkPressedButton(keys);

86 -

87 if(pressed_key>0){

88
89 switch(pressed_key){

90 +#if 0

91 case startButton:

92 startApp();

93 break;

94 @@ -764,15 +783,18 @@ void timerms_interrupt(void){

95 case emptyButton:

96 empty();

97 break;

98 +#endif

99 case upButton:

100 KeyUp();

101 break;

102 +#if 0

103 case downButton:

104 KeyDown();

105 break;

106 case selectButton:

107 selectItem();

108 break;

109 +#endif

110 }

111
112 }

LISTING A.31: Patch applied when verifying the up btn property holds

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl ./apps/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./apps/ltl 2011-04-18 20:16:08.187119563 +0100

4 @@ -0,0 +1 @@

5 +![](({pressed_key == 4} && {mstate == 1}) -> <>{stime > ref_stime})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c ./apps/menu_app.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c 2009-01-17 16:32:10.000000000 +0000

8 +++ ./apps/menu_app.c 2011-04-18 20:16:08.187119563 +0100

9 @@ -35,6 +35,7 @@

10 parm++; \

11 bounce=BOUNCEVAL; \

12 } else { \

13 +/*parm++;*/ /* Disable debouncing for this test */ \

14 bounce--; \

15 if (bounce<0) { \

16 bounce=0; \

17 @@ -110,12 +111,16 @@ typedef struct {

18 /******************************************************************
19 * STATIC DATA *
20 *******************************************************************/

21 -static uData8 stime, elog, bounce, exists_log;

22 +uData8 stime, elog, bounce, exists_log;

23 static uData8 count_pos, count_elem, count, global_progress, unit_progress;

24 -static uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

25 +uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

26 showData show;

27 static char menuVal[10], opData[AMOUNTOFDATA];

28
29 +#include <stdbool.h>

30 +

31 /*******************************************************************************
32 * FUNCTION IMPLEMENTATION *
33 ********************************************************************************/

34 @@ -150,6 +155,13 @@ void initMenuApp (void) {

35 unit_progress=0;
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36 }

37
38 +void setMstate(int s)

39 +{

40 +

41 + mstate = s;

42 + return;

43 +}

44 +

45 uData8 selectItem(void) {

46
47 if (enable_buttons) {

48 @@ -253,6 +265,7 @@ uData8 KeyUp(void) {

49 SETINC(stime);

50 result=stime;

51 break;

52 +#if 0

53 case SETLOG:

54 SETNEG(elog);

55 result=elog;

56 @@ -307,12 +320,15 @@ uData8 KeyUp(void) {

57 break;

58 default:

59 result=-1;

60 +#endif

61 }

62 }

63
64 +#if 0

65 #if VERIFICATION

66 assert(result>=0);

67 #endif

68 +#endif

69
70 return result;

71 }

72 @@ -744,17 +760,20 @@ void timerms_interrupt(void){

73
74 #if (TARGET)

75 keys=P1;

76 + pressed_key = checkPressedButton(keys);

77 #endif

78
79 #if VERIFICATION

80 - assert(keys>=0);

81 + pressed_key = upButton;

82 + //assert(keys>=0);

83 #endif

84
85 - pressed_key = checkPressedButton(keys);

86 -

87 if(pressed_key>0){

88
89 switch(pressed_key){

90 +#if 0

91 case startButton:

92 startApp();

93 break;

94 @@ -764,15 +783,18 @@ void timerms_interrupt(void){

95 case emptyButton:

96 empty();

97 break;

98 +#endif

99 case upButton:

100 KeyUp();

101 break;

102 +#if 0

103 case downButton:

104 KeyDown();

105 break;

106 case selectButton:

107 selectItem();

108 break;

109 +#endif

110 }

111
112 }

LISTING A.32: Patch applied to inject a bug that violates the up btn property
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A.3.5 start btn

Formula: G((¬{press == 1} ∧ F{press == 1}) =⇒ F{q startCall})
1 #include <pthread.h>

2 #include <stdbool.h>

3
4 void initMenuApp(void);

5 void timerms_interrupt(void);

6 bool nondet_bool();

7
8 void ltl2ba_start_monitor();

9 void ltl2ba_finish_monitor();

10
11 int event_loop_done = 0;

12
13 int

14 event_loop(void *dummy)

15 {

16 int i;

17
18 __ESBMC_yield();

19 while (1) {

20 timerms_interrupt();

21 }

22
23 event_loop_done = 1;

24 return 0;

25 }

26
27 int

28 main(int argc, char **argv)

29 {

30 pthread_t thread, evt_loop;

31
32 initMenuApp();

33
34 ltl2ba_start_monitor();

35 pthread_create(&evt_loop, NULL, event_loop, NULL);

36 __ESBMC_assume(event_loop_done != 0);

37 ltl2ba_finish_monitor();

38
39 return 0;

40 }

LISTING A.33: Test harness for start btn LTL property

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl ./apps/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./apps/ltl 2011-04-19 16:03:20.608695728 +0100

4 @@ -0,0 +1 @@

5 +![]((((!{pressed_key == 1})) && <>{pressed_key == 1}) -> <>{q_startAppCalled})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c ./apps/menu_app.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c 2009-01-17 16:32:10.000000000 +0000

8 +++ ./apps/menu_app.c 2011-04-19 14:55:17.413189427 +0100

9 @@ -112,10 +112,12 @@ typedef struct {

10 *******************************************************************/

11 static uData8 stime, elog, bounce, exists_log;

12 static uData8 count_pos, count_elem, count, global_progress, unit_progress;

13 -static uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

14 +uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

15 showData show;

16 static char menuVal[10], opData[AMOUNTOFDATA];

17
18 +#include <stdbool.h>

19 +

20 /*******************************************************************************
21 * FUNCTION IMPLEMENTATION *
22 ********************************************************************************/

23 @@ -207,8 +209,10 @@ uData8 selectItem(void) {

24 return mstate;

25 }

26
27 +bool q_startAppCalled;

28 static void startApp(void) {

29
30 +q_startAppCalled = true;



Appendix A Code samples 193

31 if (exists_log) {

32 mstate=CONCABLE;

33 if (connect_cable){

34 @@ -223,6 +227,7 @@ static void startApp(void) {

35 enable_buttons=FALSE;

36 setCountElem();

37 }

38 +q_startAppCalled = false;

39 }

40
41 static void empty(void) {

42 @@ -737,27 +742,29 @@ uData8 logTransferProgress(void) {

43
44 return global_progress;

45 }

46 -

47 +bool nondet_bool();

48 void timerms_interrupt(void){

49
50 uData8 keys=0x00; /* no key pressed */

51
52 #if (TARGET)

53 keys=P1;

54 + pressed_key = checkPressedButton(keys);

55 #endif

56
57 #if VERIFICATION

58 - assert(keys>=0);

59 + pressed_key = startButton;

60 + //this indicates that startButton has been pressed

61 + //assert(keys>=0);

62 #endif

63
64 - pressed_key = checkPressedButton(keys);

65 -

66 if(pressed_key>0){

67
68 switch(pressed_key){

69 case startButton:

70 startApp();

71 break;

72 +#if 0

73 case stopButton:

74 stopApp();

75 break;

76 @@ -773,9 +780,12 @@ void timerms_interrupt(void){

77 case selectButton:

78 selectItem();

79 break;

80 +#endif

81 }

82
83 }

84 +

85 + pressed_key = 0;

86 }

87
88 void setCountElem(void){

LISTING A.34: Patch applied when verifying the start btn property holds

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl ./apps/ltl

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/ltl 1970-01-01 01:00:00.000000000 +0100

3 +++ ./apps/ltl 2011-04-18 15:13:09.434791426 +0100

4 @@ -0,0 +1 @@

5 +![]((((!{pressed_key == 1})) && <>{pressed_key == 1}) -> <>{q_startAppCalled})

6 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c ./apps/menu_app.c

7 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/apps/menu_app.c 2009-01-17 16:32:10.000000000 +0000

8 +++ ./apps/menu_app.c 2011-04-18 15:37:46.437078315 +0100

9 @@ -112,10 +112,12 @@ typedef struct {

10 *******************************************************************/

11 static uData8 stime, elog, bounce, exists_log;

12 static uData8 count_pos, count_elem, count, global_progress, unit_progress;

13 -static uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

14 +uData8 pressed_key, mstate, amount, enable_buttons, log2pc, connect_cable;

15 showData show;

16 static char menuVal[10], opData[AMOUNTOFDATA];

17
18 +#include <stdbool.h>
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19 +

20 /*******************************************************************************
21 * FUNCTION IMPLEMENTATION *
22 ********************************************************************************/

23 @@ -207,8 +209,10 @@ uData8 selectItem(void) {

24 return mstate;

25 }

26
27 +bool q_startAppCalled;

28 static void startApp(void) {

29
30 +//q_startAppCalled = true;

31 if (exists_log) {

32 mstate=CONCABLE;

33 if (connect_cable){

34 @@ -223,6 +227,7 @@ static void startApp(void) {

35 enable_buttons=FALSE;

36 setCountElem();

37 }

38 +q_startAppCalled = false;

39 }

40
41 static void empty(void) {

42 @@ -737,27 +742,29 @@ uData8 logTransferProgress(void) {

43
44 return global_progress;

45 }

46 -

47 +bool nondet_bool();

48 void timerms_interrupt(void){

49
50 uData8 keys=0x00; /* no key pressed */

51
52 #if (TARGET)

53 keys=P1;

54 + pressed_key = checkPressedButton(keys);

55 #endif

56
57 #if VERIFICATION

58 - assert(keys>=0);

59 + pressed_key = startButton;

60 + //this indicates that startButton has been pressed

61 + //assert(keys>=0);

62 #endif

63
64 - pressed_key = checkPressedButton(keys);

65 -

66 if(pressed_key>0){

67
68 switch(pressed_key){

69 case startButton:

70 startApp();

71 break;

72 +#if 0

73 case stopButton:

74 stopApp();

75 break;

76 @@ -773,9 +780,12 @@ void timerms_interrupt(void){

77 case selectButton:

78 selectItem();

79 break;

80 +#endif

81 }

82
83 }

84 +

85 + pressed_key = 0;

86 }

87
88 void setCountElem(void){

LISTING A.35: Patch applied to inject a bug that violates the start btn property
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A.3.6 buflim

Formula: G({buffer size != 0} =⇒ {next < buffer size})
1 #include <pthread.h>

2 #include <stdlib.h>

3 #include <stdbool.h>

4 #include <assert.h>

5
6 extern bool q_bufferOverflowCond;

7 extern void initLog(int sz);

8 extern void logm(char *msg);

9 int nondet_uint();

10 int nondet_int();

11 bool nondet_bool();

12 extern int getchar();

13 void __ESBMC_assume(bool x);

14
15 int event_loop_done = 0;

16
17 void *
18 event_thread(void *unused)

19 {

20 int sz = nondet_int();

21 int strsz;

22 char *str;

23
24 initLog(sz);

25
26 while (1) {

27 int i;

28 strsz = nondet_int();

29 str = malloc(strsz);

30 for (i = 0; i < strsz; i++)

31 str[i] = getchar();

32
33 str[strsz-1] = 0;

34
35 logm(str);

36
37 free(str);

38 }

39
40 event_loop_done = 1;

41 return NULL;

42 }

43
44 int

45 main(int argc, char **argv)

46 {

47 pthread_t thread, evt_loop;

48
49 initMenuApp();

50 ltl2ba_start_monitor();

51 pthread_create(&evt_loop, NULL, event_thread, NULL);

52 __ESBMC_assume(event_loop_done != 0);

53 ltl2ba_finish_monitor();

54
55 return 0;

56 }

LISTING A.36: Test harness for buflim LTL property

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/log.c ./utils/log.c

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/log.c 2009-01-17 17:01:24.000000000 +0000

3 +++ ./utils/log.c 2011-04-12 12:04:32.095896808 +0100

4 @@ -26,12 +26,18 @@ static char buffer[BUFFER_MAX]; /*
5 /*******************************************************************************
6 * FUNCTION IMPLEMENTATION *
7 ********************************************************************************/

8 +

9 +#include <stdbool.h>

10 +

11 void initLog(Data8 max) {

12
13 buffer_size = max;

14 first = next = 0;
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15 }

16
17 +#if 0

18 Data8 removeLogElement(void) {

19
20 #if VERIFICATION

21 @@ -46,6 +52,7 @@ Data8 removeLogElement(void) {

22 return LOGERROR;

23 }

24 }

25 +#endif

26
27 #if 0

28 bug

29 @@ -61,6 +68,7 @@ Data8 insertLogElement(Data8 b) {

30 if (next < buffer_size & buffer_size > 0) {

31 buffer[next] = b;

32 next = (next+1)%buffer_size;

33 #if VERIFICATION

34 assert(next<buffer_size);

35 #endif

36 @@ -98,6 +106,7 @@ void logm(char *msg) {

37
38 }

39
40 +#if 0

41 Data8 getBufferSize(void) {

42
43 if (buffer[0]!=’\0’) {

44 @@ -108,7 +117,8 @@ Data8 getBufferSize(void) {

45 }

46
47 }

48 -

49 +#endif

50 +#if 0

51 Data8 sendLog2PC(void) {

52
53 uData8 i, err=0;

54 @@ -132,3 +142,4 @@ Data8 sendLog2PC(void) {

55
56 return err;

57 }

58 +#endif

59 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/ltl ./utils/ltl

60 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/ltl 1970-01-01 01:00:00.000000000 +0100

61 +++ ./utils/ltl 2011-04-18 21:05:33.400092859 +0100

62 @@ -0,0 +1 @@

63 +![]({buffer_size != 0} -> {next < buffer_size})

LISTING A.37: Patch applied when verifying the buflim property holds

1 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/log.c ./utils/log.c

2 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/log.c 2009-01-17 17:01:24.000000000 +0000

3 +++ ./utils/log.c 2011-04-18 21:41:33.042403103 +0100

4 @@ -26,12 +26,16 @@ static char buffer[BUFFER_MAX]; /*
5 /*******************************************************************************
6 * FUNCTION IMPLEMENTATION *
7 ********************************************************************************/

8 +

9 +#include <stdbool.h>

10 +

11 void initLog(Data8 max) {

12
13 buffer_size = max;

14 first = next = 0;

15 }

16
17 +#if 0

18 Data8 removeLogElement(void) {

19
20 #if VERIFICATION

21 @@ -46,6 +50,7 @@ Data8 removeLogElement(void) {

22 return LOGERROR;

23 }

24 }

25 +#endif

26
27 #if 0
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28 bug

29 @@ -60,7 +65,9 @@ Data8 insertLogElement(Data8 b) {

30
31 if (next < buffer_size & buffer_size > 0) {

32 buffer[next] = b;

33 - next = (next+1)%buffer_size;

34 +// next = (next+1)%buffer_size;

35 + next %= buffer_size;

36 + next += 1; /* Breaking */

37 #if VERIFICATION

38 assert(next<buffer_size);

39 #endif

40 @@ -98,6 +105,7 @@ void logm(char *msg) {

41
42 }

43
44 +#if 0

45 Data8 getBufferSize(void) {

46
47 if (buffer[0]!=’\0’) {

48 @@ -108,7 +116,8 @@ Data8 getBufferSize(void) {

49 }

50
51 }

52 -

53 +#endif

54 +#if 0

55 Data8 sendLog2PC(void) {

56
57 uData8 i, err=0;

58 @@ -132,3 +141,4 @@ Data8 sendLog2PC(void) {

59
60 return err;

61 }

62 +#endif

63 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/log.h ./utils/log.h

64 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/log.h 2009-01-12 22:11:34.000000000 +0000

65 +++ ./utils/log.h 2011-04-18 21:42:29.794835893 +0100

66 @@ -30,8 +30,8 @@

67 #define LOGERROR 100

68
69 static uData8 first; /* Pointer to the input buffer */

70 -static uData8 next; /* Pointer to the output pointer */

71 -static Data8 buffer_size; /* Max amount of elements in the buffer */

72 +uData8 next; /* Pointer to the output pointer */

73 +Data8 buffer_size; /* Max amount of elements in the buffer */

74
75 /********************************
76 * EXPORTED FUNCTIONS PROTOTYPES *
77 diff -r -N -E -b -up /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/ltl ./utils/ltl

78 --- /home/jmorse/Downloads/tmp/pulse_oximeter/src/utils/ltl 1970-01-01 01:00:00.000000000 +0100

79 +++ ./utils/ltl 2011-04-18 21:13:07.997528631 +0100

80 @@ -0,0 +1 @@

81 +![]({buffer_size != 0} -> {next < buffer_size})

LISTING A.38: Patch applied to inject a bug that violates the buflim property

A.4 Bicycle Computer

1 #include <time.h>

2 #include <stdbool.h>

3 #include <stdio.h>

4 #include <stdint.h>

5 #include <pthread.h>

6
7 #include <sys/time.h>

8
9 pthread_t ltl2ba_start_monitor(void);

10 void ltl2ba_finish_monitor(pthread_t t);

11
12 enum statet {

13 trip_state = 0, speed_state = 1, total_state = 2, time_state = 3

14 };
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15
16 pthread_mutex_t cycle_dist_lock;

17 uint64_t cycle_distance_m = 0;

18 uint64_t total_cycle_distance_m = 0;

19 enum statet cur_state = 0;

20 struct timeval starttime;

21 unsigned int display = 0;

22
23 void __ESBMC_really_atomic_begin();

24 void __ESBMC_really_atomic_end();

25
26 int

27 fprintf(const char *fmt, ...)

28 {

29 display = 1;

30 display = 0;

31 }

32
33 static unsigned int

34 state2time(enum statet thestate)

35 {

36
37 switch (thestate) {

38 case trip_state:

39 return 200;

40 case speed_state:

41 return 100;

42 case total_state:

43 return 500;

44 case time_state:

45 return 1000;

46 }

47 }

48
49 void *
50 printing_thread(void *dummy)

51 {

52 enum statet captured_state;

53 uint64_t captured_distance, s_since, captured_total_distance;

54 struct timeval captured_time, now;

55 struct timespec time_to_sleep;

56 double speed;

57
58 while (true) {

59
60 pthread_mutex_lock(&cycle_dist_lock);

61 __ESBMC_really_atomic_begin();

62 captured_state = cur_state;

63 captured_distance = cycle_distance_m;

64 captured_total_distance = total_cycle_distance_m;

65 captured_time = starttime;

66 __ESBMC_really_atomic_end();

67 pthread_mutex_unlock(&cycle_dist_lock);

68
69 gettimeofday(&now, NULL);

70
71 switch (captured_state) {

72 case trip_state:

73 /* Mileage */

74 fprintf(stderr, "Mileage: %llum\n", captured_distance);

75 break;

76 case speed_state:

77 s_since = now.tv_sec - captured_time.tv_sec;

78 if (s_since != 0)

79 speed = (double)captured_distance / (double)s_since;

80 else

81 speed = 0;

82
83 fprintf(stderr, "Speed: %f M/S\n", speed);

84 break;

85 case total_state:

86 fprintf(stderr, "Total Mileage: %llum\n",

87 captured_total_distance);

88 break;

89 case time_state:

90 s_since = now.tv_sec - captured_time.tv_sec;

91 fprintf(stderr, "Time: %d seconds\n", s_since);

92 break;

93 }

94
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95 time_to_sleep.tv_nsec = state2time(captured_state) * 1000000;

96 time_to_sleep.tv_sec = time_to_sleep.tv_nsec / 1000000000;

97 time_to_sleep.tv_nsec %= 1000000000;

98 nanosleep(&time_to_sleep, NULL);

99 }

100
101 return NULL;

102 }

103
104 void *
105 cycling_thread(void *dummy)

106 {

107 struct timespec time_to_sleep;

108
109 time_to_sleep.tv_sec = 0;

110 time_to_sleep.tv_nsec = 100000000;

111
112 // Follow existing progress formula, not defined in spec

113
114 while (true) {

115 nanosleep(&time_to_sleep, NULL);

116 if ((rand() % 3) == 0) {

117 pthread_mutex_lock(&cycle_dist_lock);

118 __ESBMC_really_atomic_begin();

119 cycle_distance_m++;

120 total_cycle_distance_m++;

121 __ESBMC_really_atomic_end();

122 pthread_mutex_unlock(&cycle_dist_lock);

123 }

124 }

125
126 return NULL;

127 }

128
129 int input;

130 void __ESBMC_switch_to_monitor(void);

131
132 int

133 main()

134 {

135 pthread_t cycling, printing;

136
137 pthread_t monitor = ltl2ba_start_monitor();

138 gettimeofday(&starttime, NULL);

139 pthread_mutex_init(&cycle_dist_lock, NULL);

140 __ESBMC_atomic_begin();

141 pthread_create(&cycling, NULL, cycling_thread, NULL);

142 pthread_create(&printing, NULL, printing_thread, NULL);

143 __ESBMC_atomic_end();

144
145 do {

146 printf("Cycling options:\n");

147 printf("1) Reset button\n");

148 printf("2) Mode button\n");

149 printf("3) Quit\n");

150 //scanf("%d", &input);

151 int face = nondet_int();

152 input = face;

153
154 switch (input) {

155 default:

156 printf("Not a valid input\n");

157 break;

158 case 1:

159 pthread_mutex_lock(&cycle_dist_lock);

160 __ESBMC_really_atomic_begin();

161 gettimeofday(&starttime, NULL);

162 cycle_distance_m = 0;

163 __ESBMC_really_atomic_end();

164 pthread_mutex_unlock(&cycle_dist_lock);

165 break;

166 case 2:

167 pthread_mutex_lock(&cycle_dist_lock);

168 __ESBMC_really_atomic_begin();

169 cur_state = (cur_state + 1) % 4;

170 __ESBMC_really_atomic_end();

171 pthread_mutex_unlock(&cycle_dist_lock);

172 break;

173 case 3:

174 goto out; // 100% legitimate use of goto
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175 }

176 } while (1);

177
178 out:

179 // Clear up

180
181 ltl2ba_finish_monitor(monitor);

182
183 exit(0);

184 }

LISTING A.39: Source code for example bicycle computer, multithreaded LTL test program



Appendix B

Concurrency optimisation results

This appendix contains the results of the multithreaded optimisation test runs, as discussed in

Chapter 5. The first table below identifies the longest running test run for a particular benchmark,

while all the other tables show a comparison between ESBMC running without any optimisation,

and one with. Tables are shown twice, one with rows ordered by the performance gain, the other

ordered by testname to aid comparisons. Aside from the first table, test names are truncated to

30 characters to aid layout (all remain unique).

The comparison tables have one row per test run, identified by its testname, and several statistics

regarding the performance of the run, with and without the optimisation. The ’Unopt’ column

contains the amount of time (in seconds) consumed by the unoptimised version of ESBMC for

this test run, and the (variously named) following column contains the amount of time taken

with the optimisation. The “Pct diff” column contains that percentage difference between the

unoptimised and optimised version.

Following this are two more columns, “UI” and “OI”. UI contains the number of interleavings

that are explored with the unoptimised version of ESBMC, and OI the number that are explored

if the relevant optimisation is enabled. This column is not meaningful for the incremental solving

results, as it aims to improve the speed at which states are verified, rather than reducing the

amount of state space.

A number of test runs crash due to running out of memory—these are marked with “Crash” in

the column corresponding to the time consumed, and other performance statistics are marked

N/A.

Directory Testname Time (s) UB CB #I

pthread-ext 01 inc true.i 5061 3 7 1286217

pthread-ext 02 inc cas true.i 637 3 5 112698

pthread-ext 03 incdec true.i 1746 3 3 45261

pthread-ext 04 incdec cas true.i 1814 4 2 15314

pthread-ext 05 tas true.i 5529 2 6 558538
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pthread-ext 06 ticket true.i 402 4 3 124130

pthread-ext 07 rand true.i 7318 4 3 120356

pthread-ext 08 rand cas true.i 4026 3 4 79716

pthread-ext 09 fmaxsym true.i 679 2 6 76694

pthread-ext 10 fmaxsym cas true.i 823 3 3 18567

pthread-ext 11 fmaxsymopt true.i 6981 3 4 106094

pthread-ext 12 fmaxsymopt cas true.i 2318 2 7 53810

pthread-ext 13 unverif true.i 1327 3 5 181251

pthread-ext 14 spin2003 true.i 1859 4 6 2882659

pthread-ext 15 dekker true.i 255 5 7 273452

pthread-ext 16 peterson true.i 4 5 7 9614

pthread-ext 17 szymanski true.i 4191 5 4 395961

pthread-ext 20 lamport true.i 2142 2 7 754592

pthread-ext 25 stack true.i 1273 3 3 105955

pthread-ext 26 stack cas true.i 3504 3 3 140503

pthread-ext 27 Boop simple vf false.i 9 5 1 8748

pthread-ext 28 buggy simple loop1 vf false.i 1026 5 7 3817

pthread-ext 29 conditionals vs true.i 5306 4 6 173027

pthread-ext 30 Function Pointer3 vs true.i 3302 4 3 246714

pthread-ext 31 simple loop5 vs true.i 2255 4 3 2042618

pthread-ext 32 pthread5 vs false.i 8789 1 7 449073

pthread-ext 33 double lock p1 vs true.i 1091 3 3 112830

pthread-ext 34 double lock p2 vs true.i 1878 3 3 132280

pthread-ext 35 double lock p3 vs true.i 8854 5 2 501180

pthread-ext 36 stack cas p0 vs concur true.i 4603 3 3 114363

pthread-ext 37 stack lock p0 vs concur true.i 5906 5 2 286164

pthread-ext 38 rand cas vs concur true.i 2974 5 2 18264

pthread-ext 39 rand lock p0 vs true.i 5883 3 6 421378

pthread-ext 45 monabsex1 vs true.i 1674 5 4 856860

pthread-ext 47 ticket lock hc backoff vs true.i 1083 3 3 406785

pthread-ext 48 ticket lock low contention vs true.i 10649 2 6 1355947

pthread-atomic dekker true.i 1991 3 7 2278580

pthread fib bench false.i 23 5 7 43830

pthread fib bench longer false.i 23 5 7 43830

pthread fib bench longer true.i 23 5 7 43830

pthread fib bench longest false.i 24 5 7 43830

pthread fib bench longest true.i 24 5 7 43830

pthread fib bench true.i 23 5 7 43830

pthread-atomic lamport true.i 718 5 5 499831
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pthread lazy01 false.i 932 2 7 412364

pthread-atomic peterson true.i 439 5 7 674597

pthread-atomic qrcu false.i 4966 3 3 112097

pthread-atomic qrcu true.i 1484 3 3 112097

pthread queue false.i 411 1 5 136484

pthread queue ok true.i 905 2 7 722966

pthread-atomic read write lock false.i 1006 4 4 841504

pthread-atomic read write lock true.i 789 4 4 655608

pthread reorder 2 false.i 998 5 3 160660

pthread reorder 5 false.i 4318 4 5 3604813

pthread-atomic scull true.i 643 2 3 93416

pthread sigma false.i 10965 5 5 7265574

pthread sigma true.i 11372 5 5 7265574

pthread singleton false.i 12562 1 5 1253886

pthread singleton true.i 4717 2 5 1253886

pthread stack false.i 5243 3 6 357623

pthread stack true.i 3321 3 6 298289

pthread stateful01 false.i 90 3 7 73675

pthread stateful01 true.i 83 4 7 69241

pthread sync01 true.i 118 5 7 71687

pthread-atomic szymanski true.i 2005 1 7 2591205

pthread-atomic time var mutex true.i 881 2 7 443694

pthread twostage 3 false.i 566 2 6 400616

TABLE B.1: The 67 tests and bound configurations used to evaluate optimisations. UB signifies
the unwinding bound and CB the context switch bound, and #I the number of interleavings

generated

Test name Unopt SHash Pct diff UI OI

15 dekker true.i 255 0 0.0000 273452 442

fib bench longest true.i 24 0 0.0000 43830 597

fib bench longer true.i 23 0 0.0000 43830 597

fib bench false.i 23 0 0.0000 43830 597

stateful01 true.i 83 0 0.0000 69241 264

16 peterson true.i 4 0 0.0000 9614 53

fib bench true.i 23 0 0.0000 43830 597

fib bench longer false.i 23 0 0.0000 43830 597

20 lamport true.i 2142 1 0.0467 754592 1324

32 pthread5 vs false.i 8789 12 0.1365 449073 16682

01 inc true.i 5061 11 0.2173 1286217 13215
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17 szymanski true.i 4191 14 0.3340 395961 6015

peterson true.i 439 2 0.4556 674597 2690

dekker true.i 1991 10 0.5023 2278580 11839

48 ticket lock low contention 10649 89 0.8358 1355947 71752

time var mutex true.i 881 8 0.9081 443694 8044

02 inc cas true.i 637 9 1.4129 112698 4489

31 simple loop5 vs true.i 2255 34 1.5078 2042618 50817

lazy01 false.i 932 16 1.7167 412364 14585

13 unverif true.i 1327 27 2.0347 181251 14416

39 rand lock p0 vs true.i 5883 125 2.1248 421378 61330

stateful01 false.i 90 2 2.2222 73675 1676

14 spin2003 true.i 1859 47 2.5282 2882659 75961

szymanski true.i 2005 53 2.6434 2591205 60366

lamport true.i 718 20 2.7855 499831 13539

05 tas true.i 5529 171 3.0928 558538 53657

fib bench longest false.i 24 1 4.1667 43830 597

45 monabsex1 vs true.i 1674 88 5.2569 856860 77314

stack false.i 5243 279 5.3214 357623 94729

queue ok true.i 905 52 5.7459 722966 45814

sync01 true.i 118 8 6.7797 71687 3247

29 conditionals vs true.i 5306 444 8.3679 173027 73947

stack true.i 3321 280 8.4312 298289 92010

queue false.i 411 49 11.9221 136484 28136

twostage 3 false.i 566 68 12.0141 400616 52735

read write lock false.i 1006 184 18.2903 841504 132079

reorder 5 false.i 4318 808 18.7124 3604813 618407

read write lock true.i 789 148 18.7579 655608 106026

08 rand cas true.i 4026 783 19.4486 79716 28258

09 fmaxsym true.i 679 135 19.8822 76694 27046

06 ticket true.i 402 86 21.3930 124130 38599

47 ticket lock hc backoff vs t 1083 329 30.3786 406785 157045

27 Boop simple vf false.i 9 3 33.3333 8748 2976

07 rand true.i 7318 2504 34.2170 120356 72209

singleton false.i 12562 6449 51.3374 1253886 825713

reorder 2 false.i 998 599 60.0200 160660 111301

qrcu false.i 4966 3584 72.1708 112097 101055

singleton true.i 4717 3425 72.6097 1253886 825713

35 double lock p3 vs true.i 8854 6465 73.0178 501180 422207

12 fmaxsymopt cas true.i 2318 1772 76.4452 53810 48948
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sigma true.i 11372 8794 77.3303 7265574 5450284

11 fmaxsymopt true.i 6981 5535 79.2866 106094 100234

36 stack cas p0 vs concur true 4603 3663 79.5785 114363 110942

sigma false.i 10965 8823 80.4651 7265574 5450284

30 Function Pointer3 vs true.i 3302 2704 81.8898 246714 219658

25 stack true.i 1273 1099 86.3315 105955 98719

qrcu true.i 1484 1330 89.6226 112097 101055

34 double lock p2 vs true.i 1878 1718 91.4803 132280 119041

10 fmaxsym cas true.i 823 776 94.2892 18567 18567

26 stack cas true.i 3504 3369 96.1473 140503 134069

38 rand cas vs concur true.i 2974 2886 97.0410 18264 17193

03 incdec true.i 1746 1704 97.5945 45261 44997

37 stack lock p0 vs concur tru 5906 5768 97.6634 286164 259645

33 double lock p1 vs true.i 1091 1071 98.1668 112830 98073

04 incdec cas true.i 1814 1875 103.3627 15314 15314

scull true.i 643 675 104.9767 93416 88300

28 buggy simple loop1 vf false 1026 1094 106.6277 3817 3817

TABLE B.2: Performance differences between unoptimised ESBMC and ESBMC with state
hashing enabled, ordered by performance improvement. See Appendix B for table format

Test name Unopt SHash Pct diff UI OI

01 inc true.i 5061 11 0.2173 1286217 13215

02 inc cas true.i 637 9 1.4129 112698 4489

03 incdec true.i 1746 1704 97.5945 45261 44997

04 incdec cas true.i 1814 1875 103.3627 15314 15314

05 tas true.i 5529 171 3.0928 558538 53657

06 ticket true.i 402 86 21.3930 124130 38599

07 rand true.i 7318 2504 34.2170 120356 72209

08 rand cas true.i 4026 783 19.4486 79716 28258

09 fmaxsym true.i 679 135 19.8822 76694 27046

10 fmaxsym cas true.i 823 776 94.2892 18567 18567

11 fmaxsymopt true.i 6981 5535 79.2866 106094 100234

12 fmaxsymopt cas true.i 2318 1772 76.4452 53810 48948

13 unverif true.i 1327 27 2.0347 181251 14416

14 spin2003 true.i 1859 47 2.5282 2882659 75961

15 dekker true.i 255 0 0.0000 273452 442

16 peterson true.i 4 0 0.0000 9614 53

17 szymanski true.i 4191 14 0.3340 395961 6015

20 lamport true.i 2142 1 0.0467 754592 1324
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25 stack true.i 1273 1099 86.3315 105955 98719

26 stack cas true.i 3504 3369 96.1473 140503 134069

27 Boop simple vf false.i 9 3 33.3333 8748 2976

28 buggy simple loop1 vf false 1026 1094 106.6277 3817 3817

29 conditionals vs true.i 5306 444 8.3679 173027 73947

30 Function Pointer3 vs true.i 3302 2704 81.8898 246714 219658

31 simple loop5 vs true.i 2255 34 1.5078 2042618 50817

32 pthread5 vs false.i 8789 12 0.1365 449073 16682

33 double lock p1 vs true.i 1091 1071 98.1668 112830 98073

34 double lock p2 vs true.i 1878 1718 91.4803 132280 119041

35 double lock p3 vs true.i 8854 6465 73.0178 501180 422207

36 stack cas p0 vs concur true 4603 3663 79.5785 114363 110942

37 stack lock p0 vs concur tru 5906 5768 97.6634 286164 259645

38 rand cas vs concur true.i 2974 2886 97.0410 18264 17193

39 rand lock p0 vs true.i 5883 125 2.1248 421378 61330

45 monabsex1 vs true.i 1674 88 5.2569 856860 77314

47 ticket lock hc backoff vs t 1083 329 30.3786 406785 157045

48 ticket lock low contention 10649 89 0.8358 1355947 71752

dekker true.i 1991 10 0.5023 2278580 11839

fib bench false.i 23 0 0.0000 43830 597

fib bench longer false.i 23 0 0.0000 43830 597

fib bench longer true.i 23 0 0.0000 43830 597

fib bench longest false.i 24 1 4.1667 43830 597

fib bench longest true.i 24 0 0.0000 43830 597

fib bench true.i 23 0 0.0000 43830 597

lamport true.i 718 20 2.7855 499831 13539

lazy01 false.i 932 16 1.7167 412364 14585

peterson true.i 439 2 0.4556 674597 2690

qrcu false.i 4966 3584 72.1708 112097 101055

qrcu true.i 1484 1330 89.6226 112097 101055

queue false.i 411 49 11.9221 136484 28136

queue ok true.i 905 52 5.7459 722966 45814

read write lock false.i 1006 184 18.2903 841504 132079

read write lock true.i 789 148 18.7579 655608 106026

reorder 2 false.i 998 599 60.0200 160660 111301

reorder 5 false.i 4318 808 18.7124 3604813 618407

scull true.i 643 675 104.9767 93416 88300

sigma false.i 10965 8823 80.4651 7265574 5450284

sigma true.i 11372 8794 77.3303 7265574 5450284
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singleton false.i 12562 6449 51.3374 1253886 825713

singleton true.i 4717 3425 72.6097 1253886 825713

stack false.i 5243 279 5.3214 357623 94729

stack true.i 3321 280 8.4312 298289 92010

stateful01 false.i 90 2 2.2222 73675 1676

stateful01 true.i 83 0 0.0000 69241 264

sync01 true.i 118 8 6.7797 71687 3247

szymanski true.i 2005 53 2.6434 2591205 60366

time var mutex true.i 881 8 0.9081 443694 8044

twostage 3 false.i 566 68 12.0141 400616 52735

TABLE B.3: Performance differences between unoptimised ESBMC and ESBMC with state
hashing enabled, ordered by testname. See Appendix B for table format

Test name Unopt MPOR Pct diff UI OI

16 peterson true.i 4 0 0.0000 9614 679

39 rand lock p0 vs true.i 5883 2 0.0340 421378 2897

32 pthread5 vs false.i 8789 3 0.0341 449073 7901

stack false.i 5243 4 0.0763 357623 5021

12 fmaxsymopt cas true.i 2318 2 0.0863 53810 929

01 inc true.i 5061 5 0.0988 1286217 11161

queue ok true.i 905 1 0.1105 722966 714

time var mutex true.i 881 1 0.1135 443694 959

stack true.i 3321 4 0.1204 298289 5431

48 ticket lock low contention 10649 13 0.1221 1355947 22149

11 fmaxsymopt true.i 6981 9 0.1289 106094 4967

09 fmaxsym true.i 679 1 0.1473 76694 881

29 conditionals vs true.i 5306 9 0.1696 173027 10059

twostage 3 false.i 566 1 0.1767 400616 1382

dekker true.i 1991 4 0.2009 2278580 7396

queue false.i 411 1 0.2433 136484 1217

15 dekker true.i 255 1 0.3922 273452 2390

05 tas true.i 5529 24 0.4341 558538 42995

13 unverif true.i 1327 6 0.4521 181251 10402

20 lamport true.i 2142 10 0.4669 754592 10147

08 rand cas true.i 4026 21 0.5216 79716 8152

lazy01 false.i 932 5 0.5365 412364 5873

peterson true.i 439 3 0.6834 674597 6666

07 rand true.i 7318 61 0.8336 120356 15890

sync01 true.i 118 1 0.8475 71687 732
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stateful01 false.i 90 1 1.1111 73675 1510

stateful01 true.i 83 1 1.2048 69241 1510

02 inc cas true.i 637 8 1.2559 112698 9746

szymanski true.i 2005 28 1.3965 2591205 48202

30 Function Pointer3 vs true.i 3302 56 1.6959 246714 27509

14 spin2003 true.i 1859 36 1.9365 2882659 93139

10 fmaxsym cas true.i 823 18 2.1871 18567 3385

reorder 5 false.i 4318 98 2.2696 3604813 96446

33 double lock p1 vs true.i 1091 39 3.5747 112830 22486

read write lock true.i 789 29 3.6755 655608 31111

read write lock false.i 1006 38 3.7773 841504 40335

34 double lock p2 vs true.i 1878 71 3.7806 132280 29680

lamport true.i 718 32 4.4568 499831 22754

26 stack cas true.i 3504 183 5.2226 140503 35705

35 double lock p3 vs true.i 8854 507 5.7262 501180 98595

31 simple loop5 vs true.i 2255 144 6.3858 2042618 205493

36 stack cas p0 vs concur true 4603 301 6.5392 114363 38349

25 stack true.i 1273 84 6.5986 105955 23352

qrcu false.i 4966 384 7.7326 112097 29672

03 incdec true.i 1746 140 8.0183 45261 16213

reorder 2 false.i 998 84 8.4168 160660 26730

06 ticket true.i 402 36 8.9552 124130 27371

scull true.i 643 68 10.5754 93416 19952

37 stack lock p0 vs concur tru 5906 668 11.3105 286164 87752

sigma true.i 11372 1304 11.4668 7265574 1074683

sigma false.i 10965 1312 11.9653 7265574 1074683

45 monabsex1 vs true.i 1674 216 12.9032 856860 238604

47 ticket lock hc backoff vs t 1083 155 14.3121 406785 104469

qrcu true.i 1484 255 17.1833 112097 29672

27 Boop simple vf false.i 9 2 22.2222 8748 2101

04 incdec cas true.i 1814 427 23.5391 15314 8110

38 rand cas vs concur true.i 2974 736 24.7478 18264 9334

fib bench false.i 23 8 34.7826 43830 20536

fib bench longest true.i 24 9 37.5000 43830 20536

fib bench longest false.i 24 9 37.5000 43830 20536

fib bench longer true.i 23 9 39.1304 43830 20536

fib bench true.i 23 9 39.1304 43830 20536

fib bench longer false.i 23 9 39.1304 43830 20536

singleton false.i 12562 5537 44.0774 1253886 704750
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singleton true.i 4717 2527 53.5722 1253886 728403

28 buggy simple loop1 vf false 1026 644 62.7680 3817 3087

17 szymanski true.i 4191 2814 67.1439 395961 229512

TABLE B.4: Performance differences between unoptimised ESBMC and ESBMC with the
MPOR optimisation enabled, ordered by performance improvement. See Appendix B for table

format

Test name Unopt MPOR Pct diff UI OI

01 inc true.i 5061 5 0.0988 1286217 11161

02 inc cas true.i 637 8 1.2559 112698 9746

03 incdec true.i 1746 140 8.0183 45261 16213

04 incdec cas true.i 1814 427 23.5391 15314 8110

05 tas true.i 5529 24 0.4341 558538 42995

06 ticket true.i 402 36 8.9552 124130 27371

07 rand true.i 7318 61 0.8336 120356 15890

08 rand cas true.i 4026 21 0.5216 79716 8152

09 fmaxsym true.i 679 1 0.1473 76694 881

10 fmaxsym cas true.i 823 18 2.1871 18567 3385

11 fmaxsymopt true.i 6981 9 0.1289 106094 4967

12 fmaxsymopt cas true.i 2318 2 0.0863 53810 929

13 unverif true.i 1327 6 0.4521 181251 10402

14 spin2003 true.i 1859 36 1.9365 2882659 93139

15 dekker true.i 255 1 0.3922 273452 2390

16 peterson true.i 4 0 0.0000 9614 679

17 szymanski true.i 4191 2814 67.1439 395961 229512

20 lamport true.i 2142 10 0.4669 754592 10147

25 stack true.i 1273 84 6.5986 105955 23352

26 stack cas true.i 3504 183 5.2226 140503 35705

27 Boop simple vf false.i 9 2 22.2222 8748 2101

28 buggy simple loop1 vf false 1026 644 62.7680 3817 3087

29 conditionals vs true.i 5306 9 0.1696 173027 10059

30 Function Pointer3 vs true.i 3302 56 1.6959 246714 27509

31 simple loop5 vs true.i 2255 144 6.3858 2042618 205493

32 pthread5 vs false.i 8789 3 0.0341 449073 7901

33 double lock p1 vs true.i 1091 39 3.5747 112830 22486

34 double lock p2 vs true.i 1878 71 3.7806 132280 29680

35 double lock p3 vs true.i 8854 507 5.7262 501180 98595

36 stack cas p0 vs concur true 4603 301 6.5392 114363 38349

37 stack lock p0 vs concur tru 5906 668 11.3105 286164 87752
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38 rand cas vs concur true.i 2974 736 24.7478 18264 9334

39 rand lock p0 vs true.i 5883 2 0.0340 421378 2897

45 monabsex1 vs true.i 1674 216 12.9032 856860 238604

47 ticket lock hc backoff vs t 1083 155 14.3121 406785 104469

48 ticket lock low contention 10649 13 0.1221 1355947 22149

dekker true.i 1991 4 0.2009 2278580 7396

fib bench false.i 23 8 34.7826 43830 20536

fib bench longer false.i 23 9 39.1304 43830 20536

fib bench longer true.i 23 9 39.1304 43830 20536

fib bench longest false.i 24 9 37.5000 43830 20536

fib bench longest true.i 24 9 37.5000 43830 20536

fib bench true.i 23 9 39.1304 43830 20536

lamport true.i 718 32 4.4568 499831 22754

lazy01 false.i 932 5 0.5365 412364 5873

peterson true.i 439 3 0.6834 674597 6666

qrcu false.i 4966 384 7.7326 112097 29672

qrcu true.i 1484 255 17.1833 112097 29672

queue false.i 411 1 0.2433 136484 1217

queue ok true.i 905 1 0.1105 722966 714

read write lock false.i 1006 38 3.7773 841504 40335

read write lock true.i 789 29 3.6755 655608 31111

reorder 2 false.i 998 84 8.4168 160660 26730

reorder 5 false.i 4318 98 2.2696 3604813 96446

scull true.i 643 68 10.5754 93416 19952

sigma false.i 10965 1312 11.9653 7265574 1074683

sigma true.i 11372 1304 11.4668 7265574 1074683

singleton false.i 12562 5537 44.0774 1253886 704750

singleton true.i 4717 2527 53.5722 1253886 728403

stack false.i 5243 4 0.0763 357623 5021

stack true.i 3321 4 0.1204 298289 5431

stateful01 false.i 90 1 1.1111 73675 1510

stateful01 true.i 83 1 1.2048 69241 1510

sync01 true.i 118 1 0.8475 71687 732

szymanski true.i 2005 28 1.3965 2591205 48202

time var mutex true.i 881 1 0.1135 443694 959

twostage 3 false.i 566 1 0.1767 400616 1382

TABLE B.5: Performance differences between unoptimised ESBMC and ESBMC with the
MPOR optimisation enabled, ordered by testname. See Appendix B for table format



Appendix B Concurrency optimisation results 211

Test name Unopt SmtSymex Pct diff UI OI

29 conditionals vs true.i 5306 219 4.1274 173027 173027

32 pthread5 vs false.i 8789 888 10.1035 449073 449073

39 rand lock p0 vs true.i 5883 721 12.2557 421378 421378

38 rand cas vs concur true.i 2974 386 12.9792 18264 18264

qrcu false.i 4966 688 13.8542 112097 112097

03 incdec true.i 1746 255 14.6048 45261 45261

36 stack cas p0 vs concur true 4603 761 16.5327 114363 114363

stack false.i 5243 1010 19.2638 357623 357623

04 incdec cas true.i 1814 367 20.2315 15314 15314

30 Function Pointer3 vs true.i 3302 671 20.3210 246714 246714

34 double lock p2 vs true.i 1878 420 22.3642 132280 132280

stack true.i 3321 973 29.2984 298289 298289

33 double lock p1 vs true.i 1091 330 30.2475 112830 112830

26 stack cas true.i 3504 1172 33.4475 140503 140503

12 fmaxsymopt cas true.i 2318 817 35.2459 53810 53810

37 stack lock p0 vs concur tru 5906 2101 35.5740 286164 286164

11 fmaxsymopt true.i 6981 2834 40.5959 106094 106094

17 szymanski true.i 4191 1834 43.7604 395961 395961

qrcu true.i 1484 671 45.2156 112097 112097

10 fmaxsym cas true.i 823 394 47.8736 18567 18567

07 rand true.i 7318 3600 49.1938 120356 0

09 fmaxsym true.i 679 337 49.6318 76694 76694

25 stack true.i 1273 632 49.6465 105955 105955

queue false.i 411 261 63.5036 136484 136484

twostage 3 false.i 566 477 84.2756 400616 400616

06 ticket true.i 402 341 84.8259 124130 124130

08 rand cas true.i 4026 3600 89.4188 79716 0

lazy01 false.i 932 837 89.8069 412364 412364

47 ticket lock hc backoff vs t 1083 991 91.5051 406785 406785

sync01 true.i 118 108 91.5254 71687 71687

stateful01 true.i 83 80 96.3855 69241 69241

13 unverif true.i 1327 1289 97.1364 181251 181251

16 peterson true.i 4 4 100.0000 9614 9614

02 inc cas true.i 637 645 101.2559 112698 112698

fib bench longest true.i 24 25 104.1667 43830 43830

read write lock false.i 1006 1052 104.5726 841504 841504

read write lock true.i 789 829 105.0697 655608 655608

fib bench longest false.i 24 26 108.3333 43830 43830
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lamport true.i 718 805 112.1170 499831 499831

fib bench longer true.i 23 26 113.0435 43830 43830

fib bench false.i 23 26 113.0435 43830 43830

fib bench true.i 23 26 113.0435 43830 43830

fib bench longer false.i 23 26 113.0435 43830 43830

scull true.i 643 765 118.9736 93416 93416

27 Boop simple vf false.i 9 11 122.2222 8748 8748

peterson true.i 439 539 122.7790 674597 674597

28 buggy simple loop1 vf false 1026 1317 128.3626 3817 3817

stateful01 false.i 90 133 147.7778 73675 73675

reorder 2 false.i 998 1833 183.6673 160660 160660

15 dekker true.i 255 887 347.8431 273452 273452

singleton false.i 12562 Crash N/A 1253886 N/A

35 double lock p3 vs true.i 8854 Crash N/A 501180 N/A

48 ticket lock low contention 10649 Crash N/A 1355947 N/A

sigma true.i 11372 Crash N/A 7265574 N/A

sigma false.i 10965 Crash N/A 7265574 N/A

01 inc true.i 5061 Crash N/A 1286217 N/A

05 tas true.i 5529 Crash N/A 558538 N/A

reorder 5 false.i 4318 Crash N/A 3604813 N/A

dekker true.i 1991 Crash N/A 2278580 N/A

szymanski true.i 2005 Crash N/A 2591205 N/A

45 monabsex1 vs true.i 1674 Crash N/A 856860 N/A

31 simple loop5 vs true.i 2255 Crash N/A 2042618 N/A

20 lamport true.i 2142 Crash N/A 754592 N/A

14 spin2003 true.i 1859 Crash N/A 2882659 N/A

time var mutex true.i 881 Crash N/A 443694 N/A

queue ok true.i 905 Crash N/A 722966 N/A

TABLE B.6: Performance differences between unoptimised ESBMC and ESBMC with the
incremental solving optimisation enabled, ordered by performance improvement. See Ap-

pendix B for table format

Test name Unopt SmtSymex Pct diff UI OI

01 inc true.i 5061 Crash N/A 1286217 N/A

02 inc cas true.i 637 645 101.2559 112698 112698

03 incdec true.i 1746 255 14.6048 45261 45261

04 incdec cas true.i 1814 367 20.2315 15314 15314

05 tas true.i 5529 Crash N/A 558538 N/A

06 ticket true.i 402 341 84.8259 124130 124130
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07 rand true.i 7318 3600 49.1938 120356 0

08 rand cas true.i 4026 3600 89.4188 79716 0

09 fmaxsym true.i 679 337 49.6318 76694 76694

10 fmaxsym cas true.i 823 394 47.8736 18567 18567

11 fmaxsymopt true.i 6981 2834 40.5959 106094 106094

12 fmaxsymopt cas true.i 2318 817 35.2459 53810 53810

13 unverif true.i 1327 1289 97.1364 181251 181251

14 spin2003 true.i 1859 Crash N/A 2882659 N/A

15 dekker true.i 255 887 347.8431 273452 273452

16 peterson true.i 4 4 100.0000 9614 9614

17 szymanski true.i 4191 1834 43.7604 395961 395961

20 lamport true.i 2142 Crash N/A 754592 N/A

25 stack true.i 1273 632 49.6465 105955 105955

26 stack cas true.i 3504 1172 33.4475 140503 140503

27 Boop simple vf false.i 9 11 122.2222 8748 8748

28 buggy simple loop1 vf false 1026 1317 128.3626 3817 3817

29 conditionals vs true.i 5306 219 4.1274 173027 173027

30 Function Pointer3 vs true.i 3302 671 20.3210 246714 246714

31 simple loop5 vs true.i 2255 Crash N/A 2042618 N/A

32 pthread5 vs false.i 8789 888 10.1035 449073 449073

33 double lock p1 vs true.i 1091 330 30.2475 112830 112830

34 double lock p2 vs true.i 1878 420 22.3642 132280 132280

35 double lock p3 vs true.i 8854 Crash N/A 501180 N/A

36 stack cas p0 vs concur true 4603 761 16.5327 114363 114363

37 stack lock p0 vs concur tru 5906 2101 35.5740 286164 286164

38 rand cas vs concur true.i 2974 386 12.9792 18264 18264

39 rand lock p0 vs true.i 5883 721 12.2557 421378 421378

45 monabsex1 vs true.i 1674 Crash N/A 856860 N/A

47 ticket lock hc backoff vs t 1083 991 91.5051 406785 406785

48 ticket lock low contention 10649 Crash N/A 1355947 N/A

dekker true.i 1991 Crash N/A 2278580 N/A

fib bench false.i 23 26 113.0435 43830 43830

fib bench longer false.i 23 26 113.0435 43830 43830

fib bench longer true.i 23 26 113.0435 43830 43830

fib bench longest false.i 24 26 108.3333 43830 43830

fib bench longest true.i 24 25 104.1667 43830 43830

fib bench true.i 23 26 113.0435 43830 43830

lamport true.i 718 805 112.1170 499831 499831

lazy01 false.i 932 837 89.8069 412364 412364
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peterson true.i 439 539 122.7790 674597 674597

qrcu false.i 4966 688 13.8542 112097 112097

qrcu true.i 1484 671 45.2156 112097 112097

queue false.i 411 261 63.5036 136484 136484

queue ok true.i 905 Crash N/A 722966 N/A

read write lock false.i 1006 1052 104.5726 841504 841504

read write lock true.i 789 829 105.0697 655608 655608

reorder 2 false.i 998 1833 183.6673 160660 160660

reorder 5 false.i 4318 Crash N/A 3604813 N/A

scull true.i 643 765 118.9736 93416 93416

sigma false.i 10965 Crash N/A 7265574 N/A

sigma true.i 11372 Crash N/A 7265574 N/A

singleton false.i 12562 Crash N/A 1253886 N/A

singleton true.i 4717 Crash N/A 1253886 N/A

stack false.i 5243 1010 19.2638 357623 357623

stack true.i 3321 973 29.2984 298289 298289

stateful01 false.i 90 133 147.7778 73675 73675

stateful01 true.i 83 80 96.3855 69241 69241

sync01 true.i 118 108 91.5254 71687 71687

szymanski true.i 2005 Crash N/A 2591205 N/A

time var mutex true.i 881 Crash N/A 443694 N/A

twostage 3 false.i 566 477 84.2756 400616 400616

TABLE B.7: Performance differences between unoptimised ESBMC and ESBMC with the
incremental solving optimisation enabled, ordered by testname. See Appendix B for table

format

Test name Unopt TGuard Pct diff UI OI

20 lamport true.i 2142 34 1.5873 754592 30712

singleton false.i 12562 332 2.6429 1253886 299175

29 conditionals vs true.i 5306 204 3.8447 173027 123874

17 szymanski true.i 4191 204 4.8676 395961 169131

35 double lock p3 vs true.i 8854 507 5.7262 501180 269577

36 stack cas p0 vs concur true 4603 284 6.1699 114363 84022

sync01 true.i 118 8 6.7797 71687 11595

singleton true.i 4717 327 6.9324 1253886 299175

32 pthread5 vs false.i 8789 627 7.1339 449073 222538

30 Function Pointer3 vs true.i 3302 242 7.3289 246714 130590

stack false.i 5243 396 7.5529 357623 129574

qrcu false.i 4966 391 7.8735 112097 75131
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37 stack lock p0 vs concur tru 5906 483 8.1781 286164 135324

03 incdec true.i 1746 151 8.6483 45261 32549

38 rand cas vs concur true.i 2974 292 9.8184 18264 13372

04 incdec cas true.i 1814 182 10.0331 15314 11898

34 double lock p2 vs true.i 1878 206 10.9691 132280 89872

26 stack cas true.i 3504 410 11.7009 140503 102406

stack true.i 3321 465 14.0018 298289 112116

33 double lock p1 vs true.i 1091 166 15.2154 112830 75932

stateful01 true.i 83 13 15.6627 69241 15935

15 dekker true.i 255 43 16.8627 273452 33881

39 rand lock p0 vs true.i 5883 1047 17.7970 421378 217787

25 stack true.i 1273 227 17.8319 105955 76705

szymanski true.i 2005 365 18.2045 2591205 758332

27 Boop simple vf false.i 9 2 22.2222 8748 2691

qrcu true.i 1484 384 25.8760 112097 75131

queue false.i 411 109 26.5207 136484 79376

31 simple loop5 vs true.i 2255 725 32.1508 2042618 956966

queue ok true.i 905 293 32.3757 722966 272383

dekker true.i 1991 724 36.3636 2278580 811084

time var mutex true.i 881 324 36.7764 443694 186576

read write lock true.i 789 299 37.8961 655608 282901

read write lock false.i 1006 387 38.4692 841504 365129

lazy01 false.i 932 389 41.7382 412364 100798

06 ticket true.i 402 177 44.0299 124130 79406

peterson true.i 439 195 44.4191 674597 270893

07 rand true.i 7318 4321 59.0461 120356 70210

12 fmaxsymopt cas true.i 2318 1191 51.3805 53810 21570

14 spin2003 true.i 1859 988 53.1469 2882659 1275675

47 ticket lock hc backoff vs t 1083 583 53.8319 406785 298849

lamport true.i 718 408 56.8245 499831 292908

stateful01 false.i 90 53 58.8889 73675 15935

45 monabsex1 vs true.i 1674 1045 62.4253 856860 561771

11 fmaxsymopt true.i 6981 5653 80.9769 106094 73714

13 unverif true.i 1327 1173 88.3949 181251 121305

scull true.i 643 584 90.8243 93416 63406

reorder 2 false.i 998 932 93.3868 160660 61497

02 inc cas true.i 637 614 96.3893 112698 85688

08 rand cas true.i 4026 4032 100.0149 79716 50631

10 fmaxsym cas true.i 823 885 107.5334 18567 15192



216 Appendix B Concurrency optimisation results

twostage 3 false.i 566 622 109.8940 400616 117508

28 buggy simple loop1 vf false 1026 1159 112.9630 3817 3537

reorder 5 false.i 4318 7083 164.0342 3604813 1301418

16 peterson true.i 4 8 200.0000 9614 6868

fib bench longest true.i 24 61 254.1667 43830 31421

fib bench longest false.i 24 61 254.1667 43830 31421

fib bench true.i 23 60 260.8696 43830 31421

fib bench longer true.i 23 61 265.2174 43830 31421

fib bench false.i 23 61 265.2174 43830 31421

fib bench longer false.i 23 61 265.2174 43830 31421

09 fmaxsym true.i 679 1841 271.1340 76694 44082

48 ticket lock low contention 10649 Crash N/A 1355947 N/A

sigma true.i 11372 Crash N/A 7265574 N/A

sigma false.i 10965 Crash N/A 7265574 N/A

01 inc true.i 5061 Crash N/A 1286217 N/A

05 tas true.i 5529 Crash N/A 558538 N/A

TABLE B.8: Performance differences between unoptimised ESBMC and ESBMC with the
thread guard optimisation enabled, ordered by performance improvement. See Appendix B for

table format

Test name Unopt TGuard Pct diff UI OI

01 inc true.i 5061 Crash N/A 1286217 N/A

02 inc cas true.i 637 614 96.3893 112698 85688

03 incdec true.i 1746 151 8.6483 45261 32549

04 incdec cas true.i 1814 182 10.0331 15314 11898

05 tas true.i 5529 Crash N/A 558538 N/A

06 ticket true.i 402 177 44.0299 124130 79406

07 rand true.i 7318 4321 59.0461 120356 70210

08 rand cas true.i 4026 4032 100.0149 79716 50631

09 fmaxsym true.i 679 1841 271.1340 76694 44082

10 fmaxsym cas true.i 823 885 107.5334 18567 15192

11 fmaxsymopt true.i 6981 5653 80.9769 106094 73714

12 fmaxsymopt cas true.i 2318 1191 51.3805 53810 21570

13 unverif true.i 1327 1173 88.3949 181251 121305

14 spin2003 true.i 1859 988 53.1469 2882659 1275675

15 dekker true.i 255 43 16.8627 273452 33881

16 peterson true.i 4 8 200.0000 9614 6868

17 szymanski true.i 4191 204 4.8676 395961 169131

20 lamport true.i 2142 34 1.5873 754592 30712
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25 stack true.i 1273 227 17.8319 105955 76705

26 stack cas true.i 3504 410 11.7009 140503 102406

27 Boop simple vf false.i 9 2 22.2222 8748 2691

28 buggy simple loop1 vf false 1026 1159 112.9630 3817 3537

29 conditionals vs true.i 5306 204 3.8447 173027 123874

30 Function Pointer3 vs true.i 3302 242 7.3289 246714 130590

31 simple loop5 vs true.i 2255 725 32.1508 2042618 956966

32 pthread5 vs false.i 8789 627 7.1339 449073 222538

33 double lock p1 vs true.i 1091 166 15.2154 112830 75932

34 double lock p2 vs true.i 1878 206 10.9691 132280 89872

35 double lock p3 vs true.i 8854 507 5.7262 501180 269577

36 stack cas p0 vs concur true 4603 284 6.1699 114363 84022

37 stack lock p0 vs concur tru 5906 483 8.1781 286164 135324

38 rand cas vs concur true.i 2974 292 9.8184 18264 13372

39 rand lock p0 vs true.i 5883 1047 17.7970 421378 217787

45 monabsex1 vs true.i 1674 1045 62.4253 856860 561771

47 ticket lock hc backoff vs t 1083 583 53.8319 406785 298849

48 ticket lock low contention 10649 Crash N/A 1355947 N/A

dekker true.i 1991 724 36.3636 2278580 811084

fib bench false.i 23 61 265.2174 43830 31421

fib bench longer false.i 23 61 265.2174 43830 31421

fib bench longer true.i 23 61 265.2174 43830 31421

fib bench longest false.i 24 61 254.1667 43830 31421

fib bench longest true.i 24 61 254.1667 43830 31421

fib bench true.i 23 60 260.8696 43830 31421

lamport true.i 718 408 56.8245 499831 292908

lazy01 false.i 932 389 41.7382 412364 100798

peterson true.i 439 195 44.4191 674597 270893

qrcu false.i 4966 391 7.8735 112097 75131

qrcu true.i 1484 384 25.8760 112097 75131

queue false.i 411 109 26.5207 136484 79376

queue ok true.i 905 293 32.3757 722966 272383

read write lock false.i 1006 387 38.4692 841504 365129

read write lock true.i 789 299 37.8961 655608 282901

reorder 2 false.i 998 932 93.3868 160660 61497

reorder 5 false.i 4318 7083 164.0342 3604813 1301418

scull true.i 643 584 90.8243 93416 63406

sigma false.i 10965 Crash N/A 7265574 N/A

sigma true.i 11372 Crash N/A 7265574 N/A
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singleton false.i 12562 332 2.6429 1253886 299175

singleton true.i 4717 327 6.9324 1253886 299175

stack false.i 5243 396 7.5529 357623 129574

stack true.i 3321 465 14.0018 298289 112116

stateful01 false.i 90 53 58.8889 73675 15935

stateful01 true.i 83 13 15.6627 69241 15935

sync01 true.i 118 8 6.7797 71687 11595

szymanski true.i 2005 365 18.2045 2591205 758332

time var mutex true.i 881 324 36.7764 443694 186576

twostage 3 false.i 566 622 109.8940 400616 117508

TABLE B.9: Performance differences between unoptimised ESBMC and ESBMC with the
thread guard optimisation enabled, ordered by testname. See Appendix B for table format

Change in time Test name

-7901 32 pthread5 vs false.i

-5162 39 rand lock p0 vs true.i

-5087 29 conditionals vs true.i

-4278 qrcu false.i

-4233 stack false.i

-4147 11 fmaxsymopt true.i

-3842 36 stack cas p0 vs concur true.i

-3805 37 stack lock p0 vs concur true.i

-3733 37 stack lock p0 vs concur true.i

-3675 35 double lock p3 vs true.i

-3667 stack false.i

-3482 32 pthread5 vs false.i

-2631 30 Function Pointer3 vs true.i

-2588 38 rand cas vs concur true.i

-2527 30 Function Pointer3 vs true.i

-2468 stack false.i

-2357 17 szymanski true.i

-2348 stack true.i

-2332 26 stack cas true.i

-2305 01 inc true.i

-2239 29 conditionals vs true.i

-2158 stack true.i

-2111 11 fmaxsymopt true.i

-1700 singleton false.i

-1653 singleton false.i
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-1603 singleton false.i

-1526 singleton false.i

-1523 singleton false.i

-1501 12 fmaxsymopt cas true.i

-1491 03 incdec true.i

-1479 stack true.i

-1458 34 double lock p2 vs true.i

-1447 04 incdec cas true.i

-1364 qrcu false.i

-1327 17 szymanski true.i

1190 07 rand true.i

-1161 38 rand cas vs concur true.i

-1095 29 conditionals vs true.i

992 reorder 2 false.i

908 reorder 2 false.i

TABLE B.10: List of most significant changes in performance between an unoptimised version
of ESBMC and one with incremental solving, across all runs.





Appendix C

ESBMCs SMT encoding

Before examining ESBMC’s SMT encoding, it is important to first recognise that ESBMC inher-

its its verification approach and a large amount of its code base from the CBMC model checker

[53]. The methods described in this section are thus not novel contributions by myself, although

some of them may not have appeared in publications before. It is also important that ESBMC

was branched from CBMC at version 2.9, and in the intervening six years we have diverged

significantly. The most notable difference is that CBMC focuses on reducing program traces to

SAT1, while ESBMC focuses on SMT solvers. From here on in this section I will only mention

ESBMCs encoding to SMT.

I perform this description in two sections. In the first, some of the higher level aspects of

the environment that the program executes in are discussed, necessary as the program is not

executing over a real-world machine or even simulation of one. Secondly, specific expressions

and features of the C language and how they are encoded to SMT are discussed.

One property of nomenclature occurs: an “assertion” in C is a condition representing a property

of the program that must never be violated. In SMT, however, an assertion is a constraint on

the valuation of the formula that must be met in order for the formula to be satisfiable. In this

chapter I refer to C language assertions as “property assertion”s.

C.1 Executing C as a nondeterministic program

The C language specification itself [7] defines C as operating over an abstract machine. Abstract

in that the standard does not specify many of the features of the real machines (such as the size

of pointers), but a machine in that the program is expected to posses a state and for program

instructions to modify that state. It’s initial state, and the environment in which it operates, are

also defined by the C standard.
1In recent years I understand some SMT solvers have gained some support in CBMC, but are still considered

experimental
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Model checking diverges from this model of operation because it attempts to check the correct-

ness of program properties for all possible inputs. Such inputs are nondeterministic, in that their

value can be anything (within the bounds of the C type system). As a result, any model checker

must explore multiple machine states to verify properties. In symbolic bounded model checking,

this is done by translating the program into first order logic formula that represents all possible

states in the program, modulo the program unwinding bound. In first order logic, however, every

variable must be explicitly identified, is immutable, and no indirection is permitted, presenting

several encoding challenges.

C.1.1 Renaming variables

The first step to encoding programs to SMT, is to allow nondeterministic values to be free

variables in the formula. Using an unconstrained variable will cause the solver to consider every

single valuation of it, and whether it leads to the formula being satisfied (and consequently, a

property being violated). Assignments to variables are produced by creating an SMT expression

of the right hand side of the assignment, creating an SMT variable for the left hand side, and

encoding an SMT assertion that one equals the other. The form of SMT expressions is discussed

below. To work around the immutability of SMT variables, a policy of renaming is pursued:

once an assignment is made to a variable, subsequent assignments to the same variable are given

a slightly different name. Consider a loop that increments an iterator i three times. The result

is four SMT variables: one for the initial state of the variable, and three for the assignments. To

illustrate, the constraints in the SMT formula are thus:

i#1 == i#0 + 1

i#2 == i#1 + 1

i#3 == i#2 + 1

The left hand side variables are numbered one to three, each one representing the value of

an individual assignment. Note that the right hand side uses the variable name from before

the current assignment: this corresponds to the right hand side of an expression in C being

evaluated before the left hand side is assigned. The effect of this is that the model checker must

always keep track of what the most recent assignment to a lexical variable is, while symbolically

executing a program.

A lexical variable does not only have multiple values: it can also exist in multiple different

contexts, most obviously in a recursive function. In C, this is referred as storage: whenever

a new function (or thread) scope is created during execution, memory is allocated to store the

variable.2 On a machine, assignments to such variables know which storage is in scope, and

write to the relevant piece of memory. In ESBMC, this is replicated by introducing an additional

level of renaming, to identify the piece of storage that is being assigned to. Thus, the assignments
2 In the C spec, these are referred to as automatic storage and thread local storage duration, respectively
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1 int a;
2
3 if (nondet_bool()) {
4 a = 0;
5 } else {
6 a = 1;
7 }
8
9 assert (a == 0);

FIGURE C.1: A piece of code with a nondeterministic control flow graph

above would be named i@1#1 or similar, and lexical variables with different storage would have

different numbers after the “@” character. Distinguishing storage in different threads is achieved

in exactly the same manner. This requires the model checker to track what stack frame and what

thread are currently being executed, to decide which piece of storage to assign (or read).

Within ESBMC, the variable assignment level of renaming is referred to as “level 1”, and storage

as “level 2”; I will use these terms from here.

C.1.2 Path exploration and guards

As well as having to resolve which variable valuation to use when symbolically executing a

piece of code, complexity can also be caused by the control flow graph (CFG) of the program.

Consider Figure C.1, where control flow branches depending on a nondeterministic decision,

merges, and the subsequent property assertion depends on which path was taken. One solution

to this would be to explicitly enumerate every path through the program and verify each indi-

vidually. This, however, is needlessly explicit, as we can achieve the same in a single formula.

Upon reaching a CFG branch, ESBMC executes both paths from the branch, until they merge

or the current function runs. Renaming records are duplicated such that both paths can read

variables from their common history, but new assignments (and new level 2 storage) in each

path have disjunct names. Finally, when control flow merges, all the level 2 variables3 that have

been assigned to in either path are merged, through the use of the SMT phi function.

The merge procedure is to take each modified variable and find the most recent assignment to

it on each of the merged paths.4 Then, a new assignment is made with the phi or “if-then-else”

function on the right hand side, which selects between the value from one path of the program

or the other, depending on the branch condition. Following the example in Figure C.1, the

assignments that it would produce are below:

a@1#1 == 0

a@1#2 == 1

a@1#3 == (nondet val 1) ? a@1#1 : a@1#2

3i.e., all variables with storage
4This may be an assignment from before the control flow branch on one branch, or if the variable was uninitialised

and not assigned, a free variable is used
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As the if statement does not make an assignment, it does not have any representation in the

SMT formula. Regardless of the truth of the branch condition, the assignments down each path

(to a@1#1 and a@1#2) are performed. The assignment to a@1#3 represents the merge of

the two branches at the end of the if statement, with the phi function shown as a C tertiary

operator. If the condition in the if statement is true, then a@1#1 is assigned to the new value

of a; however if it is false, then a@1#2 is assigned to a. Following the merge, new uses of the

merged variables refer to the phi assignment of the variable. In our example, the assert call

at the end of Figure C.1 checks the value of a@1#3, and the solver is then free to explore the

possible values of a from both paths of the branch.

This approach is not limited to simple fork-and-join branches: loops that contain a conditional

break can result in several branches that must all be merged together once exploration of the

loop halts. In these cases, pairs of paths are merged together into one until only one remains.

The order is unimportant. It is also possible for additional branches to occur down one path, and

for the paths to not merge symmetrically (i.e., merging in the order that they were branched).

This makes it important for each path to have an associated guard, a predicate that holds in

all variable valuations where the current path will be taken by the program under test. It is a

conjunction of all the branch conditions that must hold to reach the current path. The guard of

one path is used as the condition for phi functions when merging paths.

The guard is also used to guard any property assertions made on a particular path. The property

assertion should only lead to a verification failure if the condition is false and the path to it is a

legitimate path through the program.

I omit a description of how ESBMC performs the actual exploration of the control flow graph as

it is irrelevant to the SMT encoding. Suffice to say, it produces a set of paths through a function,

and the assignments and property assertions that are found along those paths. Function calls

are handled as the creation of a new stack frame and associated renaming numbers for variables

local to that stack frame, assignment of arguments to parameters, then exploration of paths

through that function. Returning is handled by performing an unconditional branch to the end

of the function, where all paths are merged, control is returned to the call site and the left stack

frame erased. Return values are encoding by encoding an assignment to a special variable when

interpreting a return statement: it is then merged with other paths as any other variable would

be, before being assigned to the return value at the call site as the function exit occurs.

C.1.3 Bounding paths

One of the more significant mechanisms in the CFG exploration procedure is how loops are

bounded. ESBMC defines a loop as any backwards branch in a function, so the use of explicit

goto instructions are recognised as loops too. As ESBMC is a bounded model checker, we do

not explore a backwards branch once it has been followed as many times as the bound allows,
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and execution continues as if the branch had not been taken. If it was an unconditional back-

wards branch then there is no next state, and ESBMC finds the closest unmerged path to the

backwards branch (typically an exit branch from the loop) and continues exploration from there.

This leaves the problem of what happens to the path truncated by the unwind bound. If the

backwards branch is unconditional then the path simply ceases to exist, but if it is conditional

then exploration continues, no matter what the condition evaluated to. This can lead to the

inaccurate scenario where an expression effectively evaluates to false in a branch condition, then

true in a subsequent context. To avoid this, an unwinding assumption is encoded, as an SMT

assertion (i.e., constraint), that the backwards branch condition always evaluates to false. This

causes the SMT solver to discard any program state where the backwards loop would have been

followed, as it would be inconsistent with the unwinding assumption. In effect, only paths that

loop fewer times than the unwind bound are considered by the solver. A flaw in this approach

is that, if a loop with a fixed number of iterations and no other exit branch is bounded before it

completes looping, then all code after the loop becomes unreachable as the only path through the

program loops more times than the unwind bound. The unwinding assumptions can be disabled

with the --partial-loops option, however this can lead to invalid states, as discussed. A

similar arrangement is used to bound the number of times that recursive functions can recurse.

Another feature (inherited from CBMC) is that of unwinding assertions, which instead of as-

suming that there are no paths through the program that loop more than the unwind bound,

asserts that fact instead. This triggers a property assertion failure if such a looping path can be

found through the program under test. While this is not necessarily useful for verification, it

allows an engineer to discover whether their unwinding bound is causing paths to be discarded.

While this is of course the whole point of bounded model checking, in some circumstances it

is useful to know for a program with finite state and duration that the model checker has fully

explored it.

C.1.4 Dynamic memory allocation

The two mechanisms via which C supports infinite state is through infinite recursion, and dy-

namically allocated memory. Infinite recursion is necessarily bounded (see above) for verifi-

cation to complete; however the program under test is able to dynamically allocate memory by

using the malloc function and others in its family. ESBMC supports this by explicitly identify-

ing each dynamically allocated “hunk” of memory at the point where it is allocated, and adding

new variables to the program to hold its value. In essence, memory is never actually allocated,

instead we retrospectively add variables to the program as required.
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C.2 Translating C expressions to SMT

Having explored how ESBMC models C’s abstract state machine in an SMT formula, I now

consider how individual C expressions are encoded to SMT. Immediately, it is convenient that

SMT supports variables with sorts5 such as integers, bitvectors, reals, and arrays. ESBMC

can encode C integers as SMT integers or bitvectors, however using SMT integers can lead to

inaccuracies as they do not have a byte representation or individual bits to manipulate. The rest

of this section will only deal with ESBMC’s encoding to bitvectors and arrays. This choice

introduces inaccuracy elsewhere, as ESBMC must floating point numbers as bitvectors. The

overhead of modelling IEEE754 operations is enormous, and so fixed point arithmetic is used

instead. While less accurate, the embedded and low level systems that ESBMC is typically

applied to tend not to use floating point numbers as there is little call for such features at that

level, and limited hardware support.

Each C variable is thus modelled in SMT as a bitvector or array (structs, unions and pointers are

discussed below). The majority of C operators are already available for use in the SMTLIB stan-

dard, including all arithmetic and bit operations. C expressions can thus be directly translated

from C variables, constants and operators, to SMT variables, constants and operators. Likewise,

array selection and storage is directly supported by the solver.

C.2.1 Assertions and assumptions

Property assertions encountered during the symbolic execution of the program under test are

conditions that must always hold, and as a result the SMT solver must search for any consistent

variable valuation of the program that violates a property assertion. Conversely, one may also

encode assumptions in the program, that place a constraint on the states explored. The use case

of assumptions is that a verification engineer may wish to constraint the operation of the program

in some symbolic way, for example testing a path only with a certain variable valued between

one and one hundred.

As a model checker, we require that any property violation must have the program trace available

as a counterexample to program correctness, for the verification engineer to examine. When

instructing the SMT solver to search for property violations, the solver must find a satisfying

assignment when a property is violated, so that we can examine the variable assignments. To

achieve this, after all assignments are encoded to the formula, a final constraint is added stating

that the formula is consistent only when at least one property assertion is violated. Multiple

property assertion violations are entirely possible, and in fact likely given that after the first one,

the program is known to be incorrect. This constraint is formulated by taking every property

assertion condition in the program, inverting it (so that it evaluates to true if the property is

violated), then asserting that the disjunction of all the conditions evaluates to true.
5The SMTLIB specification defines sorts of logical formula, where programmers may think of types
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1 int *p, a = 0, b = 1;
2
3 if (nondet_bool()) {
4 p = &a;
5 } else {
6 p = &b;
7 }
8
9 assert(*p);

FIGURE C.2: A piece of code with a nondeterministic pointer dereference

Assumptions are encoded by taking the conjunction of all assumption conditions, and guarding

the property assertion condition. The result is that the formula can only be satisfiable if all the

assumptions applied to the program evaluate to true.

C.2.2 Indirection

The first serious hurdle is dealing with the indirection that is permitted by the C specification.

Pointers indirectly refer to a particular data object, i.e. the storage for a variable, and

access to it occurs through dereferencing the pointer and reading or writing the corresponding

variable. In symbolic model checking, at a particular point in a path, a pointer may potentially

point at one of a set of data objects, depending on past conditions. This cannot be encoded to

SMT, as there is no facility for indirection.

Instead, ESBMC tracks the set of data objects that a pointer points at, and upon dereferencing

the pointer, produces an expression that selects which data object to evaluate to through the use

of phi operations. If the pointer dereference is assigned to, this becomes a set of conditional

assignments to data objects.

The problem is now reduced from full indirection, down to the ability to identify which data

object a pointer points at, in the SMT solver. To implement this, ESBMC (initially) models

pointer variables as an integer, and gives every data object in the program trace a unique number.

Then, identifying the data object in the SMT solver is a case of enumerating which data objects

it might be, and comparing their data object numbers to the pointer variable value. Consider

Figure C.2, where at the final statement p may point at either a or b. Down each branch of the

condition, p will be assigned the data object number of a or b, and when the two paths merge,

the p variable will be merged in a phi function just like any other variable. ESBMC will also

statically track the set of data objects p may point at, and merge that set when two paths merge.

For the final dereference, an expression similar to this will be produced:

( (p == 1) ? a : b )

Assuming that the data object number of p is one.

This does not fully model the potential behaviours that pointers can exhibit. Pointer arithmetic

can allow pointers to point inside a data object, rather than at the start of it. This could be a
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character pointer to a byte inside an integer, or an integer pointer to an element of an array. The

offset into the data object may not be statically determinable, and so to model this in the SMT

solver, pointer variables become a pair of variables,6 one containing the data object number, and

the other containing the offset into the object. This allows the solver to identify a data object and

how far into it the pointer points; constructing an expression to accurately represent this such a

reference is difficult, and discussed in more detail in Section 4.2.

Numerous things can go wrong when dereferencing a pointer: the pointer may be a NULL

pointer, it may point outside the bounds of the data object, or not point at any data object at

all (if the program casts an integer to a pointer, for example). Happily, all these circumstances

are defined by the C standard to be undefined behaviour, and thus a program error. In these

circumstances, ESBMC encodes a property assertion during symbolic execution that there is no

valid path to such a state, and to make the SMT formula well formed, inserts a free variable to

be read or written. In any case where an SMT expression does evaluate to such a free variable,

the property assertion should trigger a verification failure.

C.2.3 Address space

The C language allows for pointers to be freely cast to and from integers of a sufficient bit width.

While the comparison of pointer variables that do not point at the same data object is undefined

behaviour, it is legal for a program to make decisions based on the bit pattern representation

of a pointer. This is usually unwise, although legitimate uses can be contrived, such as using a

pointer when computing the hash value of a data object when placing it in a hash table. This

means that the problem space of the model checker extends to deciding where in memory a data

object is located, and whether a program violates a property if data objects are arranged in a

certain way.

The C specification itself gives few guarantees about the bit representation of pointers. The null

pointer constant must evaluate to zero when cast to an integer, and any identical pointers cast to

integers must compare the same. Matters such as comparing the address of later bytes in data

structures greater than earlier bytes are not required for the bit representation. This means there

is great scope for different behaviours between machines within the C standard, much of which

is difficult to symbolically implement.

ESBMC takes a pragmatic approach and follows the memory address space found in most ma-

chines, where memory is an array of bytes indexed by an integer, and data objects are placed

in this array, with aggregate / composite data structures having members arranged in order of

their declaration. Padding withing the address space is present, however it is a fixed amount

appropriate for the machine mode that ESBMC is operating in (32 or 64 bits), and no attempt is

made to represent all the padding configurations that machines are allowed to use. The location

of data objects in memory, however, is encoded symbolically. The start and end address of each
6Actually a tuple, see below
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data objects are made free integer variables, and all casts to and from pointers and integers are

made relative to those variables. Constraints are then encoded that the address range of one

object does not overlap the address range of any other object (and that it is sufficiently aligned

for the allocated data object). The no-overlap constraint must be applied to each pairing of data

objects, making itO(n2)/2 in complexity. The solver is then free to re-arrange the address space

location of any data object in a consistent manner, to search for any orderings that may affect

the program state.

C.2.4 Casts

The SMTLIB standard prescribes a strong type system in SMT formula: all operations must

have exactly matching operand sorts, and no coercion of values is permitted. This means that

any cast encountered in the C program must be explicitly encoded as bit operations on the

underlying variables. C’s type system is weak, so there are many conversions to consider.

Numerous casts do not require a conversion however: the SMTLIB type system does not assign

sign or unsigned attributes to bitvectors, signedness is instead encoded in the operations applied

to variables. Pointers, represented as as a pair of variables (see Section C.2.2), do not require

any conversion either.

Within the domain of integers, when a typecast is encountered the corresponding C rules are

applied to the underlying SMT bitvector. Casting a smaller integer to a large one results in an

integer promotion. If the C language variable is unsigned, the integer is concattenated with an

appropriate number of zeros, and if it is signed then the topmost bit is replicated an appropriate

number of times and concatenated with the variable. Likewise, a conversion to a smaller sized

integer will result in an SMT extraction being encoded, to extract the appropriate number of

lower bits from the variable.

The fixed point approximate representation of floating point numbers also follows the obvious

approach: casts from floats to integers extract only the integer part of the underlying bitvector,

and casting from integer to float concatenates an appropriate number of zeros representing the

fractional part of the float.

The C99 standard introduced boolean types, which are also supported as a native sort by the

SMTLIB standard. Casting any integer to a boolean is converted to a comparison of the integer

with zero, the result of which is inverted. Casting from a boolean to integer compares the

boolean with true, evaluating to one if it was true, and zero otherwise.

More pronounced complexity occurs when casting to and from the pointer representation to an

integer. Casting to an integer is straightforwards: an (SMT) array is maintained of the start

addresses of each data object, and upon conversion this array is indexed with the data object

number from the pointer variable, and then added to the pointer offset in the pointer variable.

Producing an array to map in the opposite direction, however, from all possible addresses to their
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corresponding data object number and offset, is an unfeasible task. Instead, such a cast becomes

a chain of comparisons, testing whether the source integer lies in the address space range of a

particular data object, and evaluating to that data object number if it does. This scales linearly

with the number of data objects (that have their address taken) in the program. If the address cast

to a pointer does not lie in the range of any data object, then the data object number is set to a

special “invalid” number, which dereference property assertions check for before dereferencing

the pointer.

C.2.5 Structs and Unions

Structs and unions are fundamental parts of the C programming language, however there is no

analogous sort in the SMTLIB standard. Some SMT solvers (such as Z3) provide their own

support for structures, in the form of tuples, which are groupings of other variables. Member

variables are ordered, and can be explicitly projected or updated. Tuples can also be used in phi

functions and equalities, allowing their grouped values to be part of variable assignments, like

any other variable in a program. Previously, ESBMC has relied upon Z3’s tuple implementation

rather than reducing structures to an encoding recognised by the SMTLIB standard. Part of my

work has been to improve this situation, and is covered in detail in Section 4.1.

Unions are not fully supported by ESBMC. The most difficult feature to implement is that of

shared-storage variables, i.e. the fact that the same piece of memory may be written as an integer

in one field of a union, then read as a pointer in another field. Implementing this would require

every read or write to the union to be decomposed into a series of casts. Rather than do this,

the current solution is to represent the union as a tuple, with each field in the tuple representing

a field in the union. No shared-storage is performed. This does not meet the C specifications

requirements, but does work effectively in the vast majority of use cases, where unions are used

to merge several mutually exclusive data records to save memory.

I speculate that the most effective solution to this problem would be to statically determine when

unions are used in such a way that casts would be required, and model them in SMT as arrays of

bytes rather than any other data structure. For circumstances where only one field of the union

is ever used, the current approach is sufficient and accurate.
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editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 8413

of Lecture Notes in Computer Science, pages 373–388. Springer Berlin Heidelberg, 2014.

[34] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software

model checker Blast. STTT, 9(5-6):505–525, 2007.

[35] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software

model checker blast: Applications to software engineering. Int. J. Softw. Tools Technol.

Transf., 9(5):505–525, October 2007.

[36] Dirk Beyer, ThomasA. Henzinger, and Grégory Théoduloz. Configurable software verifi-
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