
Verifying CUDA Programs using
SMT-Based Context-Bounded Model Checking

Phillipe A. Pereira
Federal University of

Amazonas
apphillipe@gmail.com

Higo F. Albuquerque
Federal University of

Amazonas
enghigo@gmail.com

Hendrio M. Marques
Federal University of

Amazonas
hendriomm@gmail.com

Isabela S. Silva
Federal University of

Amazonas
isabelassilva@gmail.com

Celso B. Carvalho
Federal University of

Amazonas
celso@ufam.edu.br

Lucas C. Cordeiro
Federal University of

Amazonas
lucascordeiro@ufam.edu.br

ABSTRACT
We present ESBMC-GPU, an extension to the ESBMC model
checker that is aimed at verifying GPU programs written for
the CUDA framework. ESBMC-GPU uses an operational
model for the verification, i.e., an abstract representation of
the standard CUDA libraries that conservatively approxi-
mates their semantics. ESBMC-GPU verifies CUDA pro-
grams, by explicitly exploring the possible interleavings (up
to the given context bound), while treating each interleaving
itself symbolically. Experimental results show that ESBMC-
GPU is able to detect more properties violations, while keep-
ing lower rates of false results.

CCS Concepts
•Software and its engineering → Model checking;
Software verification; Formal software verification; Par-
allel programming languages;

Keywords
Symbolic and Explicit Model Checking, GPU Kernels, CUDA
Programs, MPOR

1. INTRODUCTION
The Compute Unified Device Architecture (CUDA) is a par-
allel computing platform and application programming inter-
face model created by NVIDIA [1], which extends C/C++
and Fortran to create a computational model that aims
to harness the computational power of Graphical Process-
ing Units (GPUs) [2]. As in other programming languages,
errors in CUDA programs eventually occur, in particular,
array bounds, arithmetic overflow, and division by zero vi-
olations. Additionally, since CUDA is a platform that deals
with parallel programming, specific concurrency errors re-
lated to data race and barrier divergence can be exposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2016,April 04-08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851830

due to the non-deterministic behaviour of the threads inter-
leavings [3].

Here, we describe and evaluate an approach for verifying
CUDA programs based on the Efficient SMT-Based Context-
Bounded Model Checker (ESBMC) [4, 5, 6], named ESBMC-
GPU, using an operational model, which is an abstract rep-
resentation of the standard CUDA libraries (i.e., the native
application programming interface) that conservatively ap-
proximates their semantics. We describe the implementation
of our operational model for the CUDA libraries, its pre-
conditions and simulation features (e.g., how the elements
values of the libraries are stored), and how these are ap-
plied to verify CUDA applications. In contrast to previous
attempts [3, 7, 8], we combine symbolic model checking,
based on Bounded Model Checking (BMC) and Satisfiabil-
ity Modulo Theories (SMT) techniques, with explicit state
space exploration, similar to Cordeiro et al. [4]. In particu-
lar, we explicitly explore the possible interleavings (up to
the given context bound), while we treat each interleaving
itself symbolically with respect to a given property.

To prune the state-space exploration, we apply Monotonic
Partial Order Reduction (MPOR) [9] to CUDA programs,
which eliminates all redundant interleavings without miss-
ing any behavior that can be exhibited by the program.
Since CUDA kernels typically manipulate one element of
the array at a given position, the application of MPOR
leads to substantial performance improvements. Thus, us-
ing operational models that simulate CUDA libraries, to-
gether with MPOR implementation in ESBMC-GPU, we
achieve significant (correct) results of CUDA kernels veri-
fication, primarily when compared to other state-of-the-art
GPU verifiers. Additionally, the proposed approach consid-
ers low-level aspects related to dynamic memory allocation,
data transfer, memory de-allocation, and overflow, which are
typically present in CUDA programs, but they are routinely
ignored by most GPU verifiers; we thus provide a more pre-
cise verification than other existing approaches, considering
soundness of data passed by the main program to the kernel,
with the drawback of leading to a higher verification time.

We make four major contributions. First, we extend benefits
of SMT-Based Context-Bounded Model Checking for CUDA
programs, in the context of parallel programming for GPUs,
to detect more failures than other existing approaches, while
keeping lower rates of false results. Second, this work marks
the first application of MPOR to CUDA programs to iden-
tify array accesses, which are independent, leading to sig-

nificant performance improvements. Third, we provide an
effective and efficient tool implementation (ESBMC-GPU)
to support the checking of several CUDA programs. Fourth,
we provide an extensive experimental evaluation of our ap-
proach against GKLEE [8], GPUVerify [3], and PUG [7] us-
ing standard CUDA benchmarks, which are extracted from
the literature [1, 3, 10]. Experimental results show that our
present approach outperforms all existing GPU verifiers with
respect to the number of correct results.

2. PRELIMINARIES

2.1 ESBMC
ESBMC is a context-bounded model checker for C/C++
programs based on SMT solvers, which allows the verifi-
cation of single- and multi-threaded software with shared
variables and locks [4, 5]. ESBMC can verify programs that
make use of bit-level, arrays, pointers, structs, unions, mem-
ory allocation, and fixed-point arithmetic. It can reason about
arithmetic overflows, pointer safety, memory leaks, buffer
overflows, atomicity and order violations, local and global
deadlocks, data races, and user-specified assertions.

In ESBMC, the program is modelled as a state transition
system M = (S,R, s0), which is extracted from the control-
flow graph (CFG). S represents the set of states, R ⊆ S×S
represents the set of transitions, and s0 ⊆ S represents the
set of initial states. A state s ∈ S consists of the value of the
program counter pc and the values of all program variables.
An initial state s0 assigns the initial program location of
the CFG to pc. We identify each transition γ = (si, si+1) ∈
R between two states si and si+1 with a logical formula
γ(si, si+1) that captures the constraints on the correspond-
ing values of the program counter and the program variables.

Given the transition system M, a safety property φ, a context
bound C and a bound k, ESBMC builds a reachability tree
(RT) that represents the program unfolding for C, k, and
φ. We then derive a VC ψπk for each given interleaving π =
{ν1, . . . , νk} such that ψπk is satisfiable if and only if φ has
a counterexample of depth k that is exhibited by π. ψπk is
given by the following logical formula:

ψπk = I(s0) ∧
k∨
i=0

i−1∧
j=0

γ(sj , sj+1) ∧ ¬φ(si) (1)

I characterizes the set of initial states of M and γ(sj , sj+1)
is the transition relation of M between time steps j and j+1.
Hence, I(s0)∧

∧i−1
j=0 γ(sj , sj+1) represents executions of M of

length i and ψπk can be satisfied if and only if for some i ≤ k
there exists a reachable state along π at time step i in which
φ is violated. ψπk is a quantifier-free formula in a decidable
subset of first-order logic, which is checked for satisfiability
by an SMT solver. If ψπk is satisfiable, then φ is violated
along π and the SMT solver provides a satisfying assign-
ment, from which we can extract the values of the program
variables to construct a counterexample. A counterexample
for a property φ is a sequence of states s0, s1, . . . , sk with
s0 ∈ S0, sk ∈ S, and γ (si, si+1) for 0 ≤ i < k. If ψπk is unsat-
isfiable, we can conclude that no error state is reachable in k
steps or less along π. Finally, we can define ψk =

∧
π ψ

π
k and

use this to check all paths. However, ESBMC combines sym-
bolic model checking with explicit state space exploration;
in particular, it explicitly explores the possible interleavings
(up to the given context bound) while it treats each inter-
leaving itself symbolically. ESBMC simply traverses the RT

depth-first, and calls the single-threaded BMC procedure
on the interleaving whenever it reaches an RT leaf node. It
stops when it finds a bug, or has systematically explored all
possible RT interleavings.

2.2 CUDA Programming Language
CUDA is a general-purpose parallel computing platform and
was developed by NVIDIA to represent a programming model
for GPUs [1, 10]. In the CUDA programming model, the
kernel concept is used for a function that runs n copies at
the same time in the GPU, where n is the product between
the number of blocks and threads. A kernel is defined by a
__global__ specifier and uses the notation kernel<<< B,T
>>>, where B and T are the number of blocks and threads
per block, respectively. Each kernel runs in the GPU as
thread and each thread receives an unique identifier (ID),
which is formed by thread and block numbers. The thread
ID is used to index its tasks (i.e., memory positions and
cooperation); and threads are typically organized by blocks
in the GPU. Inside a block, the thread hierarchy is defined
by a variable called threadIdx. This variable is a vector of
three components, which allows the use of uni-, two-, and
three-dimensional indexes [10].

Blocks can also be defined in three dimensions, where each
dimension can be accessed by the blockIdx variable. This
variable is also composed by three components that allow
us to use uni-, two-, and three-dimensional blocks. The
maximum number of threads per block depends on the hard-
ware platform, but it usually ranges from 1024 to 2048 [10].
Blocks have a feature that permits them to be executed in
any order; and they can also be allocated in any processor.
As a result, a kernel may also be executed by multiple blocks,
and the total number of threads represents the number of
blocks multiplied by the number of threads per block.

In the CUDA programming model, the GPU is refereed as
a device and the Central Processing Unit (CPU) is refereed
as a host. device is a specifier for functions, which are
executed and called only by the GPU, while host is a
specifier for functions, which are executed and called only by
the CPU. The data allocation in the device is carried out by
the host, using the cudaMalloc, cudaFree, and cudaMemcpy
functions; these are essential functions for CUDA programs,
to transfer data from the host to the device and vice-versa.

2.3 Existing GPU Verifiers
GPUVerify [3] uses semantics to verify kernels (synchronous,
delayed visibility), aiming to detect data race and barrier di-
vergence. GPUVerify uses Boogie verification system [11] to
generate verification conditions, which are solved by Z3 [12]
or CVC4 [13] SMT solvers. GPUVerify accepts only kernel
function as input, and it disregards main functions, which
thus exposes incorrect results for verifying low-level aspects
of CUDA programs.

SESA (Symbolic Executor with Static Analysis) [14] and
GKLEE (GPU + KLEE) [8] are based on the concolic exe-
cution (concrete but symbolic) of CUDA programs, but they
use different approaches to determine symbolic variables.
While SESA performs an automatic evaluation, GKLEE
needs inputs from the user to define those variables. SESA
checks for real applications using original configuration of
the number of threads and its focus is on data race detec-
tion, but it presents inconclusive results regarding access to
memory positions. GKLEE supports checks related to bar-
rier synchronization, functional correctness, performance,

and data race. SESA does not verify the main function,
while GKLEE considers both kernel and main functions.

PUG (Prover of User GPU Programs) [7] analyzes kernels
automatically using SMT solvers and it detects data race,
barrier synchronization, and conflicts on shared memory.
PUG faces problems with invariant derivation for loops, which
can lead to incorrect results, and thus requires the user to
provide those invariants. Problems are also found in arith-
metic operations of pointers and advanced C++ features.

3. VERIFYING CUDA PROGRAMS

3.1 Operational Models for CUDA Libraries
In the present approach, operational models are developed
to simulate the behavior of the CUDA libraries. In par-
ticular, our operational model consists of an abstract rep-
resentation of a set of methods and data structures, which
conservatively approximate the CUDA libraries semantics;
every method simulates the library’s real behavior, including
pre- and post-conditions. Thus, the operational model con-
tains only methods for verification, ignoring irrelevant calls
(e.g., screen-printing methods), where there is no relevant
property to be checked in terms of software. As a result, our
verification focuses on the operational model of the CUDA
libraries, and how it is used to verify real-world CUDA pro-
grams; this simplifies significantly the model verification and
consequently reduces the verification time. The operational
model also includes built-in assertions, which check for spe-
cific properties (e.g., division by zero, array and arithmetic
overflow, pointer safety, and data races).

Figure 1 shows an example of an operational model developed
for the cudaMalloc function, which abstracts the GPU mem-
ory hierarchy and accepts as input arguments, a pointer to
allocate memory on the device (i.e., devPtr) and the size
in bytes needed for memory allocation. The function mal-
loc represents the memory allocation on device, checking
whether there is a successful allocation (lines 8 to 12). If
so, the function returns CUDA_SUCCESS; otherwise, it returns
an error CUDA_ERROR_OUT_OF_MEMORY. The variable lastError
is global and stores the last cudaError_t value to be used in
the cudaLastError(). cudaMalloc() has, as precondition, a
positive memory size allocation; line 5 of Fig. 1 includes an
assertion in which the size to be allocated must be greater
than zero. If there is a violation in this precondition, then
ESBMC-GPU returns an error message.

1 cudaError t cudaMalloc (void ∗∗ devPtr ,
2 s i z e t s i z e) {
3 cudaError t tmp ;
4 // pre−c o n d i t i o n s
5 ESBMC assert (s i z e > 0 , ‘ ‘ S i z e must be
6 g r e a t e r than zero ’ ’) ;
7 ∗devPtr = malloc (s i z e) ;
8 i f (∗ devPtr == NULL) {
9 tmp = CUDA ERROR OUT OF MEMORY;

10 exit (1) ;
11 } else {
12 tmp = CUDA SUCCESS;
13 }
14 l a s t E r r o r = tmp ;
15 return tmp ;
16 }

Figure 1: cudaMalloc implementation.

Figure 2 presents the cudaMemcpy() function operational
model. It checks, as precondition, the memory size to be
copied (line 4). Two local variables cdst and csrc (lines 6
and 7) are used to receive arguments, which represent des-
tination and source of the data copying. This model de-
fines the number of bytes to be copied (line 8); the data
copy is actually performed (in lines 9 and 10) between de-
vice and host. Finally, cudaMemcpy function returns value
CUDA SUCCESS.

Note that the operational models are implemented according
to the functions operation, as described in the NVIDIA Pro-
gramming Guide [10]. The behavior of these functions can
be represented in C/C++ programming languages, using na-
tive functions that are already supported by ESBMC (e.g.,
malloc, free, assert). As example, the cudaMalloc function
operates similarly to the malloc function, which accepts as
input argument the size of the variable to be allocated; the
behavior of this function is in compliance with the C seman-
tics. However, the conceptual difference for CUDA programs
is that the memory allocation is carried out in the GPU,
which is abstracted since neither hardware functions nor
memory hierarchy are included into our operational model,
as also done by [3, 7, 8]. The cudaMemcpy function is im-
plemented similar to Memcpy function; the only difference
is one additional parameter, which determines whether the
operation is from device to host or vice-versa. cudaFree is
just a small (program) routine that calls the free function.

1 cudaError t cudaMemcpy(void ∗dst ,
2 const void ∗ src , s i z e t s i z e ,
3 enum cudaMemcpyKind kind) {
4 ESBMC assert (s i z e > 0 , ‘ ‘ S i z e must be
5 g r e a t e r than zero ’ ’) ;
6 char ∗ cdst = (char ∗) dst ;
7 const char ∗ c s r c = (const char ∗) s r c ;
8 int numbytes = count /(s izeof (char)) ;
9 for (int i = 0 ; i < numbytes ; i++)

10 cdst [i] = c s r c [i] ;
11 l a s t E r r o r = CUDA SUCCESS;
12 return CUDA SUCCESS ;
13 }

Figure 2: cudaMemcpy implementation.

3.2 Monotonic Partial Order Reduction
To reduce the number of threads interleavings in CUDA
programs, ESBMC-GPU implements the Monotonic Partial
Order Reduction (MPOR), which was initially proposed by
Kahlon et al. [9]. This algorithm classifies transitions in-
side a multi-threaded program as dependent or independent,
which determines whether interleaving pairs always com-
pute the same state, thus removing duplicate states in the
RT [15]. For dependent transitions, MPOR considers pos-
sible thread execution orders to ensure that all program
states are reached. If one transition is independent, then
the MPOR algorithm considers only one order, because the
program state is the same for other execution orders.

For CUDA programs, MPOR is applied to identify accesses
to different positions in (shared) arrays. Typically, threads
access unique positions in those (shared) arrays, which do
not have dependency between them, thus allowing us to re-
move redundant states that are generated by the possible
thread execution orders. Multiple accesses to specific mem-
ory positions in CUDA programs happen due to its concur-
rent nature, based on the linearized configuration of threads

and blocks [1]. The application of MPOR to that programs
ensures a dramatic performance improvement.

As example, Fig. 3(a) shows the application of MPOR to
a CUDA kernel, where the shared variable a is written in
a position relative to the thread ID. Each node in the RT
of Fig. 3 is represented as a tuple ν = (Ai, Ci, si) for a
given time step i, where Ai represents the currently active
thread; Ci represents the context switch number; and si
represents the current state. Considering two threads, two
possible interleavings can be observed, which result in the
same program state (i.e., v2 and v4 of Fig 3(a) show the
same values for array a positions). MPOR thus identifies no
dependency in the array accesses and disregards the redun-
dant states, which are represented by dotted lines. In the
kernel of Fig. 3(b), however, array a is of length 2 and two
threads are executed; those two thread execution orders re-
sult in different program states. In particular, one interleav-
ing shows an access out-of-bounds violation in array a (i.e.,
v4 of Fig 3(b)). The algorithm thus identifies the execution
order dependency and two interleavings must be considered,
leading to a property violation.

3.3 Two-threads Analysis
GPU architectures are composed by multiprocessors built
upon processing elements (PE) sets [1, 10]. Those PEs are
typically arranged in subgroups, which run in the same lock-
step, ensuring that threads inside those PEs can synchronize
using barriers, while threads from one subgroup run inde-
pendently [3] to threads from another subgroup.

Similar to GPUVerify [3] (for checking race- and divergence-
freedom) and PUG [7], we also reduce the CUDA program
verification to two threads for improving verification time
and avoiding the state-space explosion problem. Since CUDA
kernels typically manipulate one element of the array, and
for each element one thread is used, the two-threads ana-
lysis ensures that, errors (e.g., data races) that are detected
between two threads in a given subgroup, due to unsyn-
chronized accesses to shared variables, are enough to justify
the property violation in the program.

The two-threads analysis affects mostly the data race verifi-
cation, where program states must be analyzed with respect
to their possible threads interleavings, which lead to an exe-
cution order of statements that results in error. In our bench-
marks, however, we observed a substantial improvement in
performance considering only two threads, while keeping the
number of true incorrect results at low rates.

3.4 Illustrative Example
The code fragment shown in Fig. 4 has 1 block and 2 threads,
i.e., M = 1 and N = 2, respectively. This CUDA pro-
gram has a kernel (lines 3 to 5), which assigns thread’s index
values to an array passed as an input argument. The goal is
to instantiate array positions, according to the thread index.
Despite that, there is a mistake in the array index, as the
value 1 is accidentally added to the thread index (in line 4).
As shown in the main function, array positions are assigned
with value 0 (line 11), and after the kernel call (line 14), it
is expected by the programmer that a[0] == 0, a[1] == 1.

In this example, however, ESBMC-GPU detects an array
out-of-bounds violation. Indeed, this CUDA program re-
trieves a memory region that has not been previously allo-
cated, so that when threadIdx.x = 1, the program tries to
access the position a[2]. Analysing the cudaMalloc() func-

tion operational model, there is a precondition that checks if
the memory size to be allocated is greater than zero. Asser-
tions check if the result matches the expected postconditions
(line 16). The verification of this specific program produces
34 successful and 6 failed interleavings in ESBMC-GPU. One
possible failed interleaving is represented by the threads exe-
cutions t0 : a[1] = 0; t1 : a[2] = 1, where a[2] = 1 represents
an incorrect access to the array index a.

1 #define M 1
2 #define N 2
3 g l o b a l void ke rne l (int ∗A) {
4 A[threadIdx . x + 1] = threadIdx . x ;
5 }
6 int main (){
7 int ∗a ; int ∗dev a ;
8 int s i z e = N∗ s izeof (int) ;
9 a = (int ∗)malloc (s i z e) ;

10 cudaMalloc ((void∗∗)&dev a , s i z e) ;
11 for (int i = 0 ; i < N; i++) a [i] = 0 ;
12 cudaMemcpy(dev a , a , s i z e ,
13 cudaMemcpyHostToDevice) ;
14 ESBMC verify kernel (kerne l , M, N, dev a) ;
15 for (int i = 0 ; i < N; i++)
16 assert (a [i]== i) ;
17 . . .
18 }

Figure 4: Fragment of a program to index array.

ESBMC-GPU and GKLEE are able to detect this array out-
of-bounds violation, but GPUVerify and PUG fail to detect
such violation, presenting a true incorrect (missed bug).

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup
This section describes experiments to investigate ESBMC-
GPU performance for verifying CUDA programs. We also
compare ESBMC-GPU to GKLEE [8], GPUVerify [3], and
PUG [7]. In particular, we evaluate ESBMC-GPU’s ability
to verify 154 benchmarks1, which are extracted from [3, 1,
10]; we added a main function to those benchmarks that do
not contain it. The kernels typically exploit the support for:
arithmetic operations, pointer assignment, device func-
tion calls, general C functions (e.g., memset, assert), general
CUDA functions (e.g., atomicAdd, cudaMemcpy, cudaMal-
loc, cudaFree, syncthreads), general libraries in CUDA (e.g.,
curand.h, curand kernel.h, curand mtgp32 host.h) and the
ability to work with variables int, float, char as well as
type modifiers (e.g., long and unsigned), pointers to that
variables, function pointers, type definitions, and intrinsic
CUDA variables (e.g., uint4).

Our experiments answer two research questions: RQ1 (san-
ity check) which results does ESBMC-GPU obtain upon ver-
ifying benchmarks that compose the specified suite? RQ2
(comparison with other tools) what is ESBMC-GPU perfor-
mance when compared to GKLEE, GPUVerify, and PUG?

To answer RQ1, ESBMC-GPU is executed with: --force-
malloc-success, which considers that there is always enough
memory available in the device; --context-switch C2, which

1ESBMC-GPU and benchmarks are available at
http://esbmc-gpu.org
2The value of C ranges from 2 to 4 context switches.

1 g l o b a l void kerne l1 (int ∗a) {
2 a [threadIdx . x] = threadIdx . x ;
3 }

1 g l o b a l void kerne l2 (int ∗a) {
2 i f (a [1]==1){
3 a [threadIdx . x+2] = threadIdx . x ;
4 }
5 else { a [threadIdx . x] = threadIdx . x ; }
6 }

v : t , 0, =0, =00 0 a[0] a[1]

v : t , 1, =0, =01 1 a[0] a[1]

v : t , 2, =0, =12 2 a[0] a[1] v : t , 2, =0, =14 1 a[0] a[1]

v : t , 1, =0, =13 2 a[0] a[1]

(a)

v : t , 0, =0, =00 0 a[0] a[1]

v : t , 1, =0, =01 1 a[0] a[1]

v : t , 2, =0, =12 2 a[0] a[1] v : t , 2, =0, =14 1 a[2] a[1]

v : t , 1, =0, =13 2 a[0] a[1]

(b)

Figure 3: MPOR applied to a kernel with independent (Fig. 3(a)) and dependent (Fig. 3(b)) transitions.

considers a context-switch bound among all threads; and -I
libraries, which specifies the library directory. We also re-
place the kernel call by the respective ESBMC verify kernel
function using one block and two threads per block. As ex-
ample, we call ESBMC-GPU as: esbmc file.cu --force-
malloc-success --context-switch 2 --I libraries.

To answer RQ2, we apply GKLEE, GPUVerify and PUG to
the ESBMC-GPU benchmarks suite. With GKLEE, we use
two commands: gklee-nvcc and gklee. The first one checks
the file to be verified, with the extension “.cu”. When this
command is executed, two new files are generated: a “.cpp”
file and a runnable file (without extension). Then, the sec-
ond command is used with the generated runnable file. We
call GKLEE as: gklee-nvcc file.cu; gklee file.

To the verification of GPUVerify, the following modifications
are required: (a) remove the main function; (b) check if the
variable initialization performed by the main function is re-
sponsible for controlling some conditional declaration inside
the kernel; if so, such variable must be initialized by __re-
quires() function; (c) check if there is any assertion in the
kernel; if so, this assertion must be replaced by __assert();
(d) check if there are specific functions to C/C++ libraries;
if so, they must be removed, as they are not supported by
GPUVerify. To run GPUVerify, two options must be used:
--gridDim=M and --blockDim=N to assign the number of
blocks and threads (per block), respectively. We call GPU-
Verify as: gpuverify file.cu --blockDim=2 --gridDim=1.

Some additional changes to the benchmarks are necessary to
use PUG: (a) the file extension is changed from “.cu” to “.c”;
(b) given that PUG is unable to verify main functions, these
must be removed, in order to keep the kernel function only;
(c) PUG’s proprietary libraries my cutil.h and config.h must
be called inside the “.c” file. The first library has definitions
of structs, qualifiers, and datatypes. The second one defines
the number of blocks and threads (per block); (d) The kernel
function’s name has to be renamed to “kernel”. As example,
we call PUG as: pug kernel.c.

Additional options for ESBMC-GPU and GPUVerify are
necessary to check for data races and array out-of-bounds,
respectively. All experiments were conducted on an other-
wise idle Intel Core i7-4790 CPU 3.60 GHz, 16 GB of RAM,

and Linux OS. All times given are wall clock time in seconds
as measured by the unix time command.

4.2 Experimental Results
Table 1 shows the results of ESBMC-GPU, GKLEE, GPU-
Verify, and PUG; each row means: tool name (Tool); total
number of benchmarks in which the program was analyzed
to be free of errors (True Correct); total number of bench-
marks in which the error in the program was found and
an error path was reported (False Correct); total number
of benchmarks in which the program had an error but the
verifier did not find it (True Incorrect); total number of
benchmarks in which an error is reported for a program
that fulfills the specification (False Incorrect); total number
of benchmarks which are not supported (Not Supported);
verification time, in seconds, for all benchmarks (Time).

ESBMC-GPU is able to correctly verify 75.9% of the bench-
marks, GKLEE 70.1%, GPUVerify 57.7%, and PUG 35.7%.
Note that ESBMC-GPU produces 2 true incorrect results,
while GKLEE produces 14, GPUVerify produces 10, and
PUG produces 7. With ESBMC-GPU, this result is due
to incorrectly detected assertion (1) and null pointer access
(1). With GKLEE, errors are due to failure in detecting data
race (10), unsuccessful detection of attempts to modify con-
stant memory (2), incorrect detected assertion (1), and null
pointer access (1). GPUVerify does not detect data race (5),
and it is unable to return values of the device function
to the kernel, where they are called (3); additionally, it does
not detect array bounds violation (2). PUG does not de-
tect access to null pointer (1), data race (4), array bounds
violation (1), and incorrect detected assertion (1).

ESBMC-GPU generated 3 false incorrect results, due to as-
sertions included in the kernel, which should return true,
but it fails (2), and the partial coverage of the cudaMalloc
function for copies of float-type variables (1). GKLEE gen-
erated 8 false incorrect results, which are caused by incor-
rectly detected assertions (5), data-races (1), array-bounds
(1) and solver call failure (1). GPUVerify generated 8 false
incorrect results, due to incorrect detected assertion (2) and
data-races (6). PUG produces 10 false incorrect results due
to data races incorrectly detected.

Table 1: Results of ESBMC-GPU, GKLEE, GPUVerify, and PUG
Result/Tool ESBMC-GPU GKLEE GPUVerify PUG
True Correct 55 53 59 39
False Correct 62 55 30 16
True Incorrect 2 14 10 7
False Incorrect 3 8 8 10
Not Supported 32 24 47 82

Time (s) 657 125 148 11

ESBMC-GPU had 32 benchmarks that were not supported.
This is related to constant memory access (3), use of CUDA’s
specific functions (mul24(), threadfence()) (2), the use of
CUDA’s specific libraries (curand.h and math functions.h)
(9), and the use of pointers to functions, structures, and char
type variables used as kernel call arguments (18). GKLEE
has 24 benchmarks that were not supported, which are due
to the use of the memset function, which is a specific func-
tion of the C/C++ libraries (3); incorrectly detected asser-
tions (3); pointers, either used as kernel arguments or as in
any other parts of the CUDA program (9); specific CUDA
libraries curand.h (7), and switch-case functions (2).

GPUVerify did not support 47 benchmarks. Since it does
not support main functions, this explains most cases (36);
it also does not support the use of memset function (3),
while other cases are explained by the absence of support
to function pointers, either as kernel function arguments or
as in any other part of the CUDA program (8). PUG does
not support 82 benchmarks. As GPUVerify, PUG does not
verify main functions and this explains most unsupported
cases (31), while others are explained by the lack of sup-
port to syncthreads function (12), function pointers (9),
and the curand.h library (7); additionally, PUG does not
support the use of unsigned type modifier as argument to
the function atomicAdd (6); changes in variables stored in
constant memory (3), and inability to handle structs (2),
variables with device qualifier (2), and size t type (1),
in addition to other cases that PUG aborted by returning a
false null pointer access (7) or because it did not recognize
the NULL identifier (2).

MPOR produced an improved performance of approximately
80% in our benchmarks; it reduced the verification time
from 16 to 3 hours. With two-threads analysis, we fur-
ther reduced the verification time from 3 hours to 650 sec-
onds. However, ESBMC-GPU still takes more (verification)
time than all other tools. This is due to the actual execu-
tion of the threads interleavings (which combines symbolic
model checking with explicit state space exploration), while
in GPUVerify the analysis is fully symbolic, performed only
in the kernel level, without considering threads interleavings
with the main thread. PUG lower verification time is due to
the two-threads analysis and because it does not perform the
main function verification. GKLEE presents a low verifica-
tion time due to its directed state/path reduction method.

5. CONCLUSIONS
ESBMC-GPU is able to verify CUDA programs using SMT-
based context-bounded checking and operational models,
which recognize CUDA directives and further simplify the
verification model. This work marks the first application of
symbolic model checking with explicit state space explor-
ation using MPOR for verifying CUDA programs. In par-
ticular, MPOR led to 80% of performance improvement in

our benchmarks. ESBMC-GPU also presents an improved
ability to detect array out-of-bounds and data race viola-
tions if compared to GKLEE, GPUVerify, and PUG. Add-
itionally, ESBMC-GPU provides fewer incorrect results than
all other existing GPU verifiers. Experimental results show
that ESBMC-GPU presents a successful verification rate of
75.9%, compared to 70.1% of GKLEE, 57.7% of GPUVerify,
and 35.7% of PUG. For future work, we will detect barrier
divergence, improve support to argument types of kernel
functions, and apply techniques to reduce the number of
threads interleavings.

Acknowledgements. This research project was supported by
the Technology Development Institute (INDT) and by CNPq
475647/2013-0 (UNIVERSAL).

6. ADDITIONAL AUTHORS
Vanessa de S. Santos (Federal University of Amazonas) and Ri-
cardo dos S. Ferreira (Federal University of Viçosa).

7. REFERENCES
[1] J. Cheng, M. Grossman, and T. McKercher. Professional

CUDA C Programming. John Wiley and Sons, Inc., 2014.
[2] D. Kirk and W. Hwu. Programming Massively Parallel

Processors. Elsevier Inc., 1st edition, 2010.
[3] A. Betts et al. GPUVerify: A Verifier for GPU Kernels. In

OOPSLA, pp. 113–132, 2012.
[4] L. Cordeiro and B. Fischer. Verifying Multi-threaded

Software using SMT-based Context-Bounded Model
Checking. In ICSE, pp. 331–340, 2011.

[5] L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-Based
Bounded Model Checking for Embedded ANSI-C Software.
IEEE Trans. Software Eng., 38(4):957–974, 2012.

[6] M. Ramalho et al. SMT-Based Bounded Model Checking of
C++ Programs. In ECBS, pp. 147–156, 2013.

[7] G. Li and G. Gopalakrishnan. Scalable SMT-based
Verification of GPU Kernel Functions. In FSE, pp.
187–196, 2010.

[8] G. Li et al. GKLEE: Concolic Verification and Test
Generation for GPUs. In PPoPP, pp. 215–224, 2012.

[9] V. Kahlon, C. Wang, and A. Gupta. Monotonic Partial
Order Reduction: An Optimal Symbolic Partial Order
Reduction Technique. In CAV, LNCS 5643, pp. 398–413,
2009.

[10] NVIDIA. CUDA C Programming Guide. NVIDIA
Corporation, v7.0 edition, 2015.

[11] C. Le Goues, K. R. M. Leino, and M. Moskal. The Boogie
Verification Debugger. In SEFM, LNCS 7041, pp. 407–414,
2011.

[12] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In TACAS, LNCS 4963, pp. 337–340, 2008.

[13] C. Barrett et al. CVC4. In CAV, pp. 171–177, 2011.
[14] P. Li, G. Li, and G. Gopalakrishnan. Practical Symbolic

Race Checking of GPU Programs. In SC, pp. 179–190,
2014.

[15] J. Morse. Expressive and Efficient Bounded Model
Checking of Concurrent Software. University of
Southampton, PhD Thesis, 2015.

