
Verification of Delta Form Realization in Fixed-Point
Digital Controllers Using Bounded Model Checking

Iury Bessa, Hussama Ibrahim, Lucas Cordeiro, and João Edgar Chaves Filho
Electronic and Information Research Center, Federal University of Amazonas, Brazil

E-mails: {iurybessa,hussamaibrahim,lucascordeiro,jo edgar}@ufam.edu.br

Abstract—The extensive use of fixed-point digital controllers
demands a growing effort to prevent design’s errors that ap-
pear in the discrete-time domain. This paper presents a novel
verification methodology that employs Bounded Model Checking
(BMC) based on the Satisfiability Modulo Theories to verify
the occurrence of design’s errors, due to the finite word-length
format, in fixed-point digital controllers. Here, the performance
of digital controllers realizations that use delta-operators are
compared to those that use traditional direct forms. The ex-
perimental results show that the delta form realization reduces
substantially the digital controllers’ fragility. Additionally, the
proposed methodology can be very effective and efficient to
verify real-world digital controllers, where conclusive results are
obtained in nearly 95% of the benchmarks.

Keywords—fixed-point digital controllers, delta form, formal
methods, bounded model checking.

I. INTRODUCTION

The digital controllers are now widely used by the control
engineering community due to various advantages over the
analog controllers such as improved reliability, sensitivity,
flexibility, and cost. However, there are some disadvantages
in the use of digital controllers, for example, errors that are
introduced during the quantization process. In this context,
several control systems researches aim to solve problems that
appear in the discrete-time domain, in particular, problems
related to the finite word-length realizations.

Digital controllers are generally implemented in micro-
computers, microprocessors, digital signal processors [1], and
field programmable gate array [2]. According to the hardware
choice, the format and arithmetic used to represent and ma-
nipulate numbers may change (e.g., number of bits, fixed-
or floating-point arithmetic); these representations directly
influence the digital controller’s precision.

Floating-point processor has a greater number of repre-
sentable values and consequently, an enhanced precision; how-
ever, fixed-point processor is the fastest and cheapest solution,
and it is largely used in practice. The scenario aforementioned
thus requires better understanding and handling of typical
problems in digital controllers realizations so that we can
potentially reduce quantizations and finite word-length (FWL)
effects during the digital controller’s design. Several factors
can influence, intensify, or attenuate these effects, e.g., via the
use of realization structures such as direct and delta forms
as well as the definition of the number of bits and sample
rate. The possible influences of these effects bring important
stability and eigenvalues sensitiveness issues to the digital
controller’s design, which were previously investigated by
several researchers (e.g., [3]–[7]).

To avoid the performance degradation, control engineers
usually invest a greater effort on the design phase, solving

problems due to the FWL with more robust and arduous solu-
tions. Previous work propose appropriate scaling using special
metrics [4], [8]. Others developed different methodologies to
estimate the optimal word-length to avoid FWL effects [9]–
[12]. More specialized work in control systems proposes more
complex controllers to maintain the performance inside an
error bound (or uncertains), e.g., the robust and non-fragile
controllers [9], [13]. Automated verification tools have also
been applied to find design’s errors in discrete-time systems
(e.g., UPPAAL [14], Open-Kronos [15], CPN [16], and Mael-
lan [17]). However, there is still a gap in formal verification of
embedded systems; in particular in digital controllers, which
are in a continuous interaction with the enviroment.

Differently from others, this work presents a novel method-
ology to formally verify the occurrence of design’s errors in
digital controllers realizations. In particular, bounded model
checking (BMC) based on the satisfiability modulo theories
(SMT) is used to verify five types of properties, which include
overflow, limit cycle, time constrain, stability, and minimum-
phase. Additionnally, six different realization structures are
considered, which include three direct forms and three delta
forms. The main objective of this research is thus to demon-
strate that an SMT-based BMC method can be a powerful tool
in the design and verification of digital controllers, aiding the
control engineer with an efficient verification tool that is more
reliable and less laborious than traditional simulation tools
(e.g., Matlab [18] and LabVIEW [19]), since simulation tools
are hardly precise and significantly require manual intervention
from designers. In particular, simulations tools either generate
false alarms or neglect some failures due to the low coverage
achieved during simulations.

The proposed verification methodology aims to replace
the current validation process used by control engineers. In
this sense, this paper describes two important contributions: it
marks the first work that applies an SMT-based BMC technique
to verify the occurrence of various design’s errors related to
FWL and quantization effects in numerical fixed-point digital
controllers. Additionally, we demonstrate that the use of the
delta form realization presents a higher maintenance capability
of important properties (e.g., stability and minimum-phase)
than the direct form realization using an appropriate FWL
format, which is proved with the aid of an SMT-based BMC
approach.

This paper is an extension and improvement of Bessa
et al. [20]. The major difference is the verification of delta
forms implementations (Bessa et al. verify digital controllers
in direct forms only). Furthermore, the present article adds the
minimum phase and the stability verification. We have also
significantly expanded the experimental basis to demonstrate
the feasibility of the proposed verification methodology.



Fig. 1: Digital Control System

II. FIXED-POINT DIGITAL CONTROLLERS

This section introduces the main concepts about digital
controllers, including their representations and realizations;
in particular, the fixed-point representation and the related
problems. Finally, the delta form realization is presented and
its advantage is compared to the direct form.

A. Computer-Controlled Systems

In computer-controlled systems, computer does the func-
tions of electronics components in the classics of analog
control systems, the computation of errors, and the control
algorithms execution [21], [22]. The output analog signals
are typically converted into digital form by the analog-to-
digital converter (A/D) at pre-defined samples times. The
digital computer runs the control routine and delivers to the
plant a discrete control signal, which is then converted into
analog signals via the digital-to-analog converter (D/A) and
the zero-order hold (ZOH). Figure 1 shows a typical digital
control system, where the dynamic system is mathematically
represented via difference equations.

B. Fixed-Point Digital Controllers Representations and Imple-
mentations

A digital controller is a linear time-invariant causal
discrete-time dynamic system. A digital controller deals with
discrete numerical signals; its implementation is a program
executed by a microprocessor. There are various mathemat-
ical controller representations (e.g., transfer function, states
equations, and difference equations). These representations are
studied in several signals books (e.g. [23]). An important
representation is the difference equation. In particular, a digital
controller difference equation can be described as follows:

y(n) = −
N∑

k=1

aky(n− k) +

M∑
k=0

bkx(n− k) (1)

where y(n) and x(n) are the the output and input, respectively,
in instant n [23]. Using the z-transform in Eq. (1), the
digital controller can be represented via the following transfer
function:

H(z) =
b0 + b1z

−1 + ...+ bMz
−M

1 + a1z−1 + ...+ aNz−N
(2)

where z is called forward-shift operator and z−1 is called
backward-shift operator. There are many ways to implement
a digital controller in software. The realization structure of
controllers influences their performance. Different realizations
of digital controllers are studied in [9], [21]. In this work,
however, the delta form is considered and its performance
is compared to the direct form, from the formal verification
perspective. Others types of realizations to implement a digital
controller are explained in [21].

The direct realization uses directly the coefficients in
Eq. (1) in its implementation. The advantage of this implemen-
tation is that states variables are derivations of delayed inputs
and outputs. However, direct form implementations make the
controller extremely sensitive to numerical errors, which are
strongly evident in fixed-point implementations; as a result, it
may specially harm the stability of the system. The delta form
proposed by Middleton and Goodwin [4] represents a viable
alternative to prevent the violation of the system’s properties
from the numerical errors perspective, which are typically
caused by the quantizations and FWL effects.

C. Implementation of Digital Controllers Using the Delta
Operator

Goodwin proposed an alternative to minimize FWL effects
in fixed-point digital controller, the delta operator (δ), which
is defined by [4]:

δ =
q − 1

∆
(3)

where q is a shift operator and δ is the Euler approximation
to a derivative. A system in delta form has exactly the
same behavior than a continuous sampled system with ZOH.
However, this realization presents an improved round-off per-
formance, a sensitive-less controller, more accurate coefficients
representation, and a greater region of convergence so that the
discrete stability domain gets close to the continuous domain.

The delta operator is equivalent to the shift operator and all
the analysis done for the shift operator can be translated into
the delta form. However, the delta operator is the forward-
difference approximation of the differential continuous op-
erator; therefore, the delta form is closer to the continuous
behavior than the ordinary direct form, which uses the shift
operator. Furthermore, the z-domain region of convergence
(i.e., the region where the stability is guaranteed) is only the
unitary radius circle and the δ-domain region of convergence
is a circle inversely proportional to the sample period; in other
words, the set of coefficients values for which a polynomial
is stable may be much greater with the delta operator. In this
paper, controllers’ properties are compared using the delta and
direct forms, from the formal verification perspective.

D. Problems Related to Fixed-point Implementation

Implementations of digital controllers are subjected to
FWL effects; these effects are amplified in a fixed-point
processor. The FWL effects are related to small imprecision or
functional problems such as instability. The commonly error
sources are round-offs and quantizations [23]. Quantization
occurs during the A/D conversion and consists of approximat-
ing analog signal values from quantized (discrete) values. This
process generates a rounding error, whose maximum value is
2−b−1, where b is the number of bits in the fractional part.

A realistic model of a FWL system must include the
quantization of every numerical value, including each arith-
metic results (e.g., sums and products), input signals, and
system coefficients; these are narrowly related to the system’s
dynamics. These accumulated errors might affect the position
of the digital controller poles and zeros (mainly in direct forms)
and make the controller lose the stability or the minimum
phase characteristics; in the control literature, this is called
controller’s fragility. In the design phase, control engineers
try to avoid poles and zeros positions that might be fatally
affected by the FWL effects, i.e., they seek positions slightly



away from the unitary circle; sometimes it cannot be done
easily. An example is the resonant controllers, whose fixed-
point arithmetic effect influence is studied in [8].

Furthermore, a chosen fixed-point representation < k, l >,
where k is the number of bits of the integer part and l is the
number of bits of the fractional part, can only represent values
into the range from 2k−1 − 2l to −2k−1. An overflow occurs
when some operation (e.g., addition or product) returns a result
outside the range of representable values. A microprocessor
generally handles an overflow via wrap-around (i.e., allow
the numerical representation wrapping it) or saturation (i.e.,
hold the maximum representation). These round-off errors or
overflows might cause the appearing of periodic oscillations
called limit cycles. There are some books that explain com-
pletely the fixed-point theory and operations, as in Granas
and Dugundji [24]. Additionally, problems related to FWL
effects on fixed-point format can also be found in [9], [23].
Understanding that the presence of these phenomenons might
degrade the controller’s performance, this work proposes a
novel verification method that improves the design process to
guarantee that a designed controller is immune to FWL effects.

III. VERIFICATION OF FIXED-POINT DIGITAL
CONTROLLERS

This section describes concepts of formal verification; in
particular, the bounded model checking technique that is used
to verify digital controllers realizations. We make use of the
overflow, limit cycle, and time constraints verifications as
well as the direct form realizations implemented in previous
work [20]. The verification of these properties are performed
automatically by our verification engine, which verifies the
digital controller implementation with its specification, using
an exhaustive checking via non-deterministic inputs [25], [20].
We then focus our effort on the verification methods to check
for stability and minimum phase properties for delta form
realizations.

A. Bounded Model Checking (BMC)

The basic idea of bounded model checking (BMC) is
to check for the negation of a given property at a given
depth. Supposing a transition system M , a property φ and
a bound k, BMC unrolls the system k times and translate
it into a verification condition (VC) ψ, in such a way that
ψ is satisfiable if and only if φ has a counterexample of
depth less than equal to k. SMT solvers such as Z3 [26] and
Boolector [27] can be used to check whether ψ is satisfiable.
In BMC of digital controllers, the bound k limits the number of
loop iterations and recursive calls in the controller’s realization.
BMC thus generates VCs that reflect the exact path in which a
statement is executed, the context in which a given function is
called, and the bit-accurate representation of expressions [28].

In this work, we use the ESBMC (Efficient SMT-Based
Context-Bounded Model Checker) tool as the verification
engine, since it represents one of the most efficient BMC
tools that participated in the last software verification com-
petitions [29], [30]. ESBMC is an SMT-based bounded model
checker for C/C++ programs. ESBMC finds properties viola-
tions such as pointer safety, array bounds, atomicity, overflows,
deadlocks, data race, and memory leaks in single- and multi-
threaded software (with shared variables and locks). It also
verifies programs that make use of bit-level, pointers, structs,
unions, fixed-point arithmetics; it was already used in previous

work to verify properties of digital filters [25] and digital
controllers [20]. Inside ESBMC, the associated problem is
formulated by constructing the following logical formula:

Ψk = I(S0) ∧
k∨

i=0

i−1∧
j=0

γ(sj , sj+1) ∧ φ(s1) (4)

where φ is a property (e.g., overflow and limit cycle) and S0

is a set of initial states of M , and γ(sj , sj+1) is the transition
relation of M between time steps j and j+ 1. Hence, I(S0)∧∧i−1

j=0 represents the executions of a transition system M of
length i. The above VC Ψ can be satisfied if and only if, for
some i ≤ k there exists a reachable state at time step i in which
φ is violated. If the logical formula (4) is satisfiable (i.e. returns
true), then the SMT solver provides a satisfying assignment,
from which the values of the digital controller’s variables can
be extracted, in order to construct a counterexample. If it is
unsatisfiable (i.e., returns false), then we can concluded that
there is no error state in k steps or less.

B. Stability Verification

The stability is a basic requirement, but very important
during the digital controller’s design. In particular, digital
controllers are updated every sampling period and we have
to ensure that the system will be stable during its execution.
A discrete system is stable if all its poles are in the interior
region of the unitary circle of z-plane (i.e., the poles must have
the module less than one) [21].

In previous work [20], [25], stability verification using
Schur Decomposition is used and implemented inside ES-
BMC using the Eigen Library [31]. This method, however,
involves many matrix operations that makes it computationally
expensive. The advantage of the Jury’s algorithm can easily
be observed via its complexity, which is O(n2), while the
complexity of the previous stability verification, based on the
Schur decomposition, is O(n3) [31].

In this paper, we choose another method to check for
stability. We use the Jury’s Stability Test [21], since it is
computationally less expensive than the Schur Decomposition
and does not require the use of an external library. Jury can
be used for a given polynomial of the form:

F (z) = anz
n + an−1z

n−1 + ...a1z + a0 = 0, an > 0, (5)

where an until a0 represent the digital controller denominator
coefficients. In particular, these coefficients are distributed in
a Jury’s table using the following format:

row zn zn−1 ... zn−k ... z1 z0

1 an an−1 ... an−k ... a1 a0
2 a0 a1 ... ak ... an−1 an
3 b0 b1 ... bn−k ... bn−1 0
4 bn−1 bn−2 ... bk ... b0 0
5 c0 c1 ... ... cn−2 0 0
6 cn−2 cn−3 ... ... c0 0 0
... ... ... ... ... ... ... ...

2n− 1 r0 0 0 0 0 0 0

Considering the Jury’s table as a matrix m with dimensions
[2n − 1][n] where n is the number of coefficients. We have
some considerations for the algorithm:

1) The first line of matrix m has the digital controller
denominator coefficients.



2) The even number lines have the inverse order of their
previous lines (i.e., despising final zeros).

3) The b0 is in line 3 of column 1 and its value is b0 =
m[3−2][1]− (m[3−2][p]/m[3−2][1])∗m[3−1][1].
Generalizing bj and cj is equal to m[i][j] = m[i −
2][j]− (m[i− 2][p]/m[i− 2][1]) ∗m[i− 1][j], where
p is the last nonzero column number for line i− 2.

4) The line 2n− 1 has only one element nonzero in the
first column.

with the Jury’s table properly filled in, it is necessary to check
the stability using the following definitions:

Definition 1. If the element m[1][1] is positive, then F(z) will
be stable iff all the first elements in odd lines (i.e., m[3][1],
m[5][1], ..., m[2n− 1][1]) are positive too.

Definition 2. If the element m[1][1] is negative, then F(z)
will be stable iff the first elements in odd lines (i.e., m[3][1],
m[5][1], ..., m[2n− 1][1]) are negative too.

As a running example, we check for the stability of the
following digital controller extracted from our benchmarks:

H(z) =
2.813z2 − 0.0163z1 − 1.872

z2 + 1.068z1 + 0.1239
(6)

it has the following Jury’s table:

row z2 z1 z0

1 1.0 1.068 0.1239
2 0.1239 1.068 1.0
3 0.984649 0.935675 0
4 0.935675 0.984649 0
5 0.095512 0 0

Analyzing the Jury table above and considering the Defi-
nition 1, we concluded that the digital controller represented
by Eq. (6) is stable, once m[1][1], m[3][1], and m[5][1] are
positive numbers.

C. Minimum Phase Verification

A minimum phase system is defined by a stable system
with all the zeros stable. Conceptually, a minimum-phase
system has all poles and zeros inside the unitary circle [21].
Minimum-phase is a desirable property in digital controllers,
because in a closed-loop system, a feedback-controlled system
shows the controllers zeros as the general systems poles, i.e., a
digital control system with a non-minimum-phase controller is
potentially unstable. The verification engine for this particular
property is similar to the stability verification and also uses
the Jury’s stability test, but instead of using digital controller
denominator coefficients, we use digital controller numerator
coefficients to check for the minimal phase.

As a running example, we check whether the digital con-
troller represented by Eq. (6) has minimum phase. In particular,
it has the following Jury’s table using numerator coefficients:

row z2 z1 z0

1 2.813 −0.0163 −1.872
2 −1.872 −0.0163 2.813
3 1.567218 −0.027147 0
4 −0.027147 1.567218 0
5 1.566748 0 0

Analyzing the Jury’s table above and considering the
Definition 1, we conclude that the digital controller represented
by Eq. (6) has minimum-phase, once m[1][1], m[3][1], and
m[5][1] are positive numbers.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation of our work consists of three
parts. Section IV-A describes the mathematical models of the
plants that are used and summarizes the digital controllers
characteristics for the respective plants. Section IV-B describes
the experiments configuration, while Section IV-C analyzes
and summarizes the experimental results.

A. Digital Controllers’ Design

We designed 35 digital controllers for the verification
of three different plants, where 18 of these controllers are
designed for a commercial ball and beam plant, which has
the following mathematical model:

G1(z) =
1.0067× 10−8(z + 9.256)(z + 0.9324)

(z − 1)3(z − 0.7041)
(7)

where the sample time is 0.01s. Others 8 controllers are
designed for an A/C motor plant and described by [22]:

G2(s) =
1

s(s+ 1)
(8)

Finally, 9 controllers are designed for a synthetic plant [22]:

G3(s) =
1

s(s+ 0.4)
(9)

The controllers’ FWL format is chosen via the methodology
presented by Carletta et al. [10], which is based on the impulse
response sum (

∑
h(k)).

B. Experimental Setup

To statically verify the digital controller (i.e., analyze the
digital controller without running it on the target platform),
we consider a 16-bit microcontroller with a clock rate
of 16 MHz as the hardware model. This work employs
ESBMC v1.23 [28] with the SMT solver Z3 v4.0 [26]. To
prevent overflows, scaling factors are considering during the
implementation. All controllers are checked against five types
of properties, as described in Section III. In this work, the
performance of the delta form realizations are compared to
the direct form realizations. As a result, all test cases are
verified in six different realizations, which include: Direct
Form I (DFI), Direct Form II (DFII), Transposed Direct Form
II (TDFII), Delta Direct Form I (DDFI), Delta Direct Form
II (DDFII), and Transposed Delta Direct Form II (TDDFII).
The verification engine is invoked as follows:
esbmc <name> \-DTESTCASE= <i> -DFILTERTYPE=
<j> \ --no-bounds-check --no-pointer-check
--no-div-by-zero-check --timeout <t>
--z3-bv

where <name> represents the verification type (e.g., stabil-
ity and overflow), <i> represents the test case index, <j>
represents the controller’s realization index, and <t> is the
maximum verification time allowed; the test cases are not
determined successful or failed if a timeout occurs. The
experiments run on a computer with the following hardware
configurations: Intel Core i7 − 2600 3.40 GHz processor, 24
GB of RAM, Ubuntu 11.10 Maverick Meerkat 64-bits OS.



Fig. 2: Results of the digital controllers verification for the
DFI, DFII, TDFII, DDFI, DDFII, and TDDFII realizations.

C. Experimental Results

Fig. 2 shows the verification results, where the horizon-
tal axis represents the digital controllers properties that are
verified; these properties are divided into 2 groups, the first
one is the direct realization while the second one is the delta
realization. The vertical axis represents the property violations
percentage (%) found by ESBMC for each group. For each
property, we executed 105 test cases running on the direct
form and the delta form realizations. According to the experi-
mental results, our verification methodology can detect several
errors in direct form and in delta form realizations, but the
transformation of coefficients to the delta form decreased up
to 36.9% of minimum phase errors, 24.8% of overflows errors,
8.7% of stability errors, and 0.8% of limit cycle errors, where
the reduced number of overflow violations is concentrated on
the DFI and TDFII implementations.

In some benchmarks, our verification engine cannot find
property violations given the time limits. Most timeouts oc-
curred during the overflow or the limit cycle verifications,
which are hard to be verified. A total of 17.1% of overflows
verifications timed out for the direct realizations. In the limit
cycle verification, the percentage goes down to 10.5% for
direct form and 24.8% for delta form. Indeed, the SMT-based
BMC approach represents an appropriate verification technique
for digital controllers, considering that it returns results in
94.8% of the benchmarks. Note that the time constraints
property is not shown in Fig. 2 since all tests returned success
for direct form and delta form realizations. In particular, time
constrains verifications do not present failures, because the
controllers’ order is relatively low and the sample time is
reasonably high.

Additionally, the verification of the minimum phase, stabil-
ity, and time constraints are very fast. All of these verifications
do not take a time longer than two seconds since non-
deterministic inputs are not used. All timeouts are concentrated
on overflows and limit cycles verifications.

The implementation choice influences the verification time.
In overflow verification, the direct forms are slower than
the delta forms. In particular, all timeouts in the overflow
verification occur in direct forms. However, the limit cycle
verification of direct forms is faster than in delta forms.

About 70% of timeouts in limit cycle verification occur in
delta forms; in particular, limit cycles verifications present the
highest verification time.

The experimental results also show that the controller order
influences the verification time, which tends to be longer in
high-order controllers; for this reason, the majority of timeouts
are concentrated on controllers, whose order is higher than
3. About 92.7% of timeouts occur in controllers with order
higher than 3. Additionally, other factors might influence the
verification time, e.g., the number of bits of the fixed-point
representation; the verification time tends to increase if the
number of bits is higher and the size of the input vector is
longer. More information about digital controller coefficients,
verification results, and execution time can be found on-line. 3

V. RELATED WORK

The FWL effects on digital controllers are already well-
known in the control systems literature. Most control systems
researchers tried to prevent these problems with an additional
effort in the design phase. These efforts involve the implemen-
tation of non-fragile controllers and the pursuit for the optimal
FWL format. An overview about these techniques can be seen
in Istepanian and Whidborne [9]. Indeed, a few related work
develop tools to verify the occurrence of these problems; they
have only studied how to prevent them. However, there are
some particular examples of the application of formal methods
to control systems monitoring and diagnostic.

In Dutertreet al. [32] is shown the advantages of formal
methods over traditional debugging tools; the authors use
SMT-based tools to diagnostic and monitor aircrafts systems.
Simko et al. [33] demonstrate that digital controllers can be
formally verified with a combination of SMT solving (to
verify the control software) and Taylor models (to predict the
continuous plant dynamic). Prabhu and Dasgupta [34] model
check discrete controllers that only react to specific events and
that can be represented via a finite-state machine. The authors
use a combination of SMT solvers and existing industrial
model checking tools [17].

There is an extensive use of model checking tools to verify
real-time systems. An example is the UPPAAL [14], which
is a model checker based on the theory of timed automata
and it is designed to verify systems that are modeled via a
timed automata network. This tool has a large and successful
application in communication protocols verification. Another
similar tool is the Open-Kronos [15], which is able to check
the reachability of timed automata and the emptiness of timed
Büchi automata. The CPN tools [16] are also used to verify
systems modeled via a colored (timed and untimed) Petri Net.

Some recent work use SMT-based BMC to verify prop-
erties of digital filters and controllers. Cox et al. [36], [37]
show that simulations tools are useful, but insufficient; the
authors propose the use of SMT-based bounded and unbounded
tools to verify digital filters. In Abreu et al. [25], digital
filters properties are verified using ESBMC, where overflows,
limit cycles, time constrains, stability, and frequency response
are checked. Most recently, Bessa et al. [20] apply formal
verification to check for overflows, limit cycles, and time
constrains in digital controllers. Here, we present an extension
of Bessa et al. [20], which marks the first use of an SMT-
based BMC approach to verify FWL effects on a wide variety

3http://www.esbmc.org/

http://www.esbmc.org/


of digital controllers properties and realizations. In particular,
the present paper expands the experimental basis of Bessa
et al. to demonstrate the feasibility of the methodology in a
different implementation (i.e. delta form) and with other types
of properties.

VI. CONCLUSIONS

This paper describes a comparative analysis between di-
rect form and delta form realizations for digital controllers
implementation using an SMT-based BMC approach to verify
properties that are hard to be checked with simulation tools.
In particular, this work describes two important contributions
to the embedded systems community. Firstly, the experimental
results show that the delta form realizations present a superior
performance if compared to the direct form realizations, reduc-
ing the occurrence of FWL related errors and preserving the
stability and minimum-phase properties, which are important
indicators of systems non-fragility. Secondly, this paper offers
an important alternative to control systems verification via
an SMT-based BMC approach. The BMC tool, used in this
work, is conclusive in 94.8% of the benchmarks, showing
the applicability of formal verifications to control systems;
additionally, we show that BMC tools represent an automated
and most reliable alternative if compared to simulation tools.

The experimental results pointed out that direct form real-
izations presented 40% of errors in properties verification after
quantization of controllers’ coefficients; however, using delta
coefficients transformations, this number goes down to 25.7%,
solving errors of overflows, limit cycle, stability, and minimum
phase. Moreover, our verification engine returns a solution for
94.8% of the benchmarks and has 5.2% of timeouts only. We
can conclude that the use of delta form realizations in digital
controllers, implemented in fixed-point devices, is an adequate
approach to prevent design’s errors. Note that this approach
does not remove all design’s errors, but it decreases them
substantially. In future, we plan to apply formal verification
to closed-loops systems and to design requirements.

Acknowledgements. The authors thank the anonymous re-
viewers for their comments, which helped them to improve
the draft version of this paper. This research was supported by
Samsung, CNPq, CAPES, and FAPEAM grants.

REFERENCES

[1] M. Masten and I. Panahi, “Digital signal processors for modern control
systems,” Control Engineering Practice, vol. 5, no. 4, pp. 449 – 458,
1997.

[2] E. Monmasson and M. Cirstea, “FPGA Design Methodology for Indus-
trial Control Systems 2014;A Review,” IEEE TIE, vol. 54, no. 4, pp.
1824–1842, 2007.

[3] P. Mantey, “Eigenvalue sensitivity and state-variable selection,” IEEE
TAC, vol. 13, no. 3, pp. 263–269, 1968.

[4] R. Middleton and G. Goodwin, “Improved finite word length character-
istics in digital control using delta operators,” IEE TAC, vol. 31, no. 11,
pp. 1015–1021, 1986.

[5] Wu et al., “Computing a FWL stability measure for second order digital
systems,” in ICARCV, vol. 3, 2004, pp. 1593–1598 Vol. 3.

[6] G. Li, “On pole and zero sensitivity of linear systems,” IEEE TCS,
vol. 44, no. 7, pp. 583–590, 1997.

[7] ——, “On the structure of digital controllers with finite word length
consideration,” IEEE TAC, vol. 43, no. 5, pp. 689–693, 1998.

[8] L. Harnefors, “Implementation of Resonant Controllers and Filters in
Fixed-Point Arithmetic,” IEEE TIE, vol. 56, no. 4, pp. 1273–1281, 2009.

[9] R. Istepanian and J. Whidborne, Digital Controller Implementation and
Fragility: A Modern Perspective, ser. Advances in Industrial Control.
Springer London, 2001.

[10] Carletta et al., “Determining appropriate precisions for signals in fixed-
point IIR filters,” in DAC, 2003, pp. 656–661.

[11] W. Sung and K.-I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,” IEEE TSP,
vol. 43, no. 12, pp. 3087–3090, Dec 1995.

[12] V. Mohta, Finite Worldlength Effects in Fixed-point Implementations of
Linear Systems. Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 1998.

[13] Wo et al., “Non-fragile controller design for discrete descriptor sys-
tems,” Journal of the Franklin Institute, vol. 346, no. 9, pp. 914 – 922,
2009.

[14] “UPPAAL,” http://www.uppaal.org, accessed: 2014-09-12.
[15] “Open-kronos,” http://www-verimag.imag.fr/∼tripakis/openkronos.

html, accessed: 2014-09-12.
[16] “CPN tools,” http://www.synopsys.com/tools/verification/

functionalverification/pages/magellan.aspx, accessed: 2014-09-12.
[17] “Magellan,” http://www.synopsys.com/tools/verification/

functionalverification/pages/magellan.aspx, accessed: 2014-09-12.
[18] T. A. Davis and K. Sigmon, MATLAB primer (7. ed.). CRC Press,

2005.
[19] G. W. Johnson, LabVIEW Graphical Programming: Practical Applica-

tions in Instrumentation and Control, 2nd ed. McGraw-Hill School
Education Group, 1997.

[20] Bessa et al., “SMT-Based Bounded Model Checking of Fixed-Point
Digital Controllers),” in IECON (to appear), 2014.

[21] K. Åström and B. Wittenmark, Computer-controlled systems: theory
and design, ser. Prentice Hall information and system sciences series.
Prentice Hall, 1997.

[22] K. Ogata, Discrete-Time Control Systems, ser. Prentice Hall Interna-
tional editions. Prentice-Hall International, 1995.

[23] J. Proakis and D. Manolakis, Digital signal processing: principles,
algorithms, and applications, ser. Prentice-Hall International editions.
Prentice Hall, 1996.

[24] A. Granas and J. Dugundji, Fixed Point Theory, ser. Monographs in
Mathematics. Springer, 2003.

[25] Abreu et al., “Verifying Fixed-Point Digital Filters using SMT-Based
Bounded Model Checking,” in SBrT, 2013.

[26] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in TACAS,
ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 337–340.

[27] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays,” in TACAS, 2009, pp. 174–177.

[28] Cordeiro et al., “SMT-Based Bounded Model Checking for Embedded
ANSI-C Software,” IEEE TSE, vol. 38, no. 4, pp. 957–974, 2012.

[29] Morse et al., “ESBMC 1.22 - (Competition Contribution),” in TACAS,
2014, pp. 405–407.

[30] Morse et al., “Handling Unbounded Loops with ESBMC 1.20 - (Com-
petition Contribution),” in TACAS, 2013, pp. 619–622.

[31] G. Guennebaud, “Eigen: a C++ Linear Algebra Lirary,” 2011.
[32] Dutertre et al., “Formal Verification and Automated Testing for Diag-

nostic and Monitoring Systems,” in AIAA Guidance, Navigation and
Control Conference and Exhibit. American Institute of Aeronautics
and Astronautics, 2008.

[33] G. Simko and E. K. Jackson, “A Bounded Model Checking Tool for
Periodic Sample-hold Systems,” in HSCC, ser. HSCC ’14. ACM, 2014,
pp. 157–162.

[34] S. Prabhu and P. Dasgupta, “Model Checking Controllers with Predicate
Inputs,” in VLSID, 2013, pp. 332–337.

[35] Anta et al., “Automatic Verification of Control System Implementa-
tions,” in EMSOFT, ser. EMSOFT ’10, 2010, pp. 9–18.

[36] Cox et al., “A Bit Too Precise? Bounded Verification of Quantized
Digital Filters,” in TACAS, 2012, pp. 33–47.

[37] Cox et al., “A bit too precise? Verification of quantized digital filters,”
STTT, vol. 16, no. 2, pp. 175–190, 2014.

http://www.uppaal.org
http://www-verimag.imag.fr/~tripakis/openkronos.html
http://www-verimag.imag.fr/~tripakis/openkronos.html
http://www.synopsys.com/tools/verification/functionalverification/pages/magellan.aspx
http://www.synopsys.com/tools/verification/functionalverification/pages/magellan.aspx
http://www.synopsys.com/tools/verification/functionalverification/pages/magellan.aspx
http://www.synopsys.com/tools/verification/functionalverification/pages/magellan.aspx

	Introduction
	Fixed-point Digital Controllers
	Computer-Controlled Systems
	Fixed-Point Digital Controllers Representations and Implementations
	Implementation of Digital Controllers Using the Delta Operator
	Problems Related to Fixed-point Implementation

	Verification of Fixed-point Digital Controllers
	Bounded Model Checking (BMC)
	Stability Verification
	Minimum Phase Verification

	Experimental Evaluation
	Digital Controllers' Design
	Experimental Setup
	Experimental Results

	Related Work
	Conclusions
	References

