
Model Checking Embedded C Software using
k-Induction and Invariants

Herbert Rocha∗, Hussama Ismail†, Lucas Cordeiro†, and Raimundo Barreto†
∗Federal University of Roraima, †Federal University of Amazonas

E-mail: herbert.rocha@ufrr.br, hussamaismail@gmail.com,
lucascordeiro@ufam.edu.br, rbarreto@icomp.ufam.edu.br

Abstract—We present a proof by induction algorithm, which
combines k-induction with invariants to model check embedded
C software with bounded and unbounded loops. The k-induction
algorithm consists of three cases: in the base case, we aim to find
a counterexample with up to k loop unwindings; in the forward
condition, we check whether loops have been fully unrolled and
that the safety property φ holds in all states reachable within k
unwindings; and in the inductive step, we check that whenever φ
holds for k unwindings, it also holds after the next unwinding of
the system. For each step of the k-induction algorithm, we infer
invariants using affine constraints (i.e., polyhedral) to specify pre-
and post-conditions. Experimental results show that our approach
can handle a wide variety of safety properties in typical embedded
software applications from telecommunications, control systems,
and medical devices; we demonstrate an improvement of the in-
duction algorithm effectiveness if compared to other approaches.

I. INTRODUCTION

The Bounded Model Checking (BMC) techniques based on
Boolean Satisfiability (SAT) or Satisfiability Modulo Theories
(SMT) have been applied to verify single- and multi-threaded
programs and to find subtle bugs in real programs [1], [2], [3].
The idea behind the BMC techniques is to check the negation
of a given property at a given depth, i.e., given a transition
system M, a property φ, and a limit of iterations k, BMC
unfolds the system k times and converts it into a Verification
Condition (VC) ψ such that ψ is satisfiable if and only if φ
has a counterexample of depth less than or equal to k.

Typically, BMC techniques are only able to falsify prop-
erties up to a given depth k; they are not able to prove the
correctness of the system, unless an upper bound of k is known,
i.e., a bound that unfolds all loops and recursive functions to
their maximum possible depth. In particular, BMC techniques
limit the visited regions of data structures (e.g., arrays) and the
number of loop iterations. This limits the state space that needs
to be explored during verification, leaving enough that real
errors in applications [1], [2], [3], [4] can be found; BMC tools
are, however, susceptible to exhaustion of time or memory
limits for programs with loops whose bounds are too large or
cannot be determined statically.

In mathematics, one usually attacks such (unbounded)
problems using proof by induction. A variant called k-induction
has been successfully combined with continuously-refined
invariants [5], to prove that (restricted) C programs do not con-
tain data races [6], [7], or that design-time time constraints are
respected [8]. Additionally, k-induction is a well-established
technique in hardware verification, where it is easy to apply
due to the monolithic transition relation present in hardware
designs [8], [9], [10]. This paper contributes a new algorithm
to prove correctness of C programs by combining k-induction
with invariants in a completely automatic way.

The main idea of the algorithm is to use an iterative
deepening approach and check, for each step k up to a
maximum value, three different cases called here as base case,
forward condition, and inductive step. Intuitively, in the base
case, we intend to find a counterexample of φ with up to k
iterations of the loop. The forward condition checks whether
loops have been fully unrolled and the validity of the property
φ in all states reachable within k iterations. The inductive step
verifies that if φ is valid for k iterations, then φ will also be
valid for the next unfolding of the system. For each step, we
infer invariants using affine constraints to prune the state space
exploration and to strengthen the induction hypothesis.

These algorithms were all implemented in the Efficient
SMT-based Context-Bounded Model Checker (ESBMC) tool,
which uses BMC techniques and SMT solvers to verify em-
bedded systems written in C/C++ [3], [11]. In Cordeiro et
al. [3], [11] the ESBMC tool is presented, which describes how
the input program is encoded in SMT; what the strategies for
unrolling loops are; what are the transformations/optimizations
that are important for performance; what are the benefits
of using an SMT solver instead of a SAT solver; and how
counterexamples to falsify properties are reconstructed.

Here we extend our previous work and focus our contri-
bution on the combination of the k-induction algorithm with
invariants. First, we describe the details of an accurate transla-
tion that extends ESBMC to prove the correctness of a given
(safety) property for any depth without manual annotations of
loops invariants. Second, we adopt program invariants (using
polyhedra) in the k-induction algorithm, to improve the quality
of the results by solving more verification tasks. Third, we
show that our implementation is applicable to a broader range
of verification tasks; in particular embedded systems, where
existing approaches do not to support [6], [7], [9].

II. INDUCTION-BASED VERIFICATION OF C PROGRAMS

USING INVARIANTS

The transformations in each step of the k-induction al-
gorithm take place at the intermediate representation level,
after converting the C program into a GOTO-program, which
simplifies the representation and handles the unrolling of the
loops and the elimination of recursive functions.

Fig. 1 shows an overview of the proposed k-induction
algorithm. The input of the algorithm is a C program P with
invariants together with the safety property φ. The algorithm
returns TRUE (if there is no path that violates the safety
property), FALSE (if there exists a path that violates the safety
property), and UNKNOWN (if it does not succeed in computing
an answer true or false).

In the base case, the algorithm tries to find a counterexam-
ple up to a maximum number of iterations k. In the forward

1 in p u t : program P and s a f e t y p r o p e r t y φ
2 output : t r u e , f a l s e , o r unknown
3 k = 1
4 f o r c e b a s e c a s e = FALSE
5 l a s t r e s u l t = UNKNOWN
6 wh i l e k <= m a x i t e r a t i o n s do
7 i f f o r c e b a s e c a s e then
8 k = k + 5
9 i f b a s e c a s e (P , φ , k) then

10 show c o u n t e r e x a m p l e s [0 . . k]
11 re tu rn FALSE
12 e l s e
13 i f f o r c e b a s e c a s e then
14 re tu rn l a s t r e s u l t
15 k=k+1
16 i f f o r w a r d c o n d i t i o n (P , φ , k) then
17 f o r c e b a s e c a s e = TRUE
18 l a s t r e s u l t = TRUE
19 e l s e
20 i f i n d u c t i v e s t e p (P , φ , k) then
21 f o r c e b a s e c a s e = TRUE
22 l a s t r e s u l t = TRUE
23 end− i f
24 end− i f
25 end− i f
26 end−wh i l e
27 re tu rn UNKNOWN

Fig. 1: An overview of the k-induction algorithm.

condition, global correctness of the loop w.r.t. the property is
shown for the case that the loop iterates at most k times; and in
the inductive step, the algorithm checks that, if the property is
valid in k iterations, then it must be valid for the next iterations.
The algorithm runs up to a maximum number of iterations
and increases the value of k if it cannot falsify the property.
In Fig. 1, the algorithm also performs a rechecking/refinement
of the result (using the flag force_basecase) by the BMC
procedure. In particular, we re-check the results in the forward
condition and the inductive step (adopting an increment of the
actual k). This re-checking procedure is needed due to the
inclusion of invariants, which over-approximates the analyzed
program; otherwise, the invariants could result in incorrect
exploration of the states sets.

A. Loop-free Programs

In the k-induction algorithm, the loop unwinding of the
program is done incrementally from one to max iterations
(cf. Fig. 1), where the number of unwindings is measured
by counting the number of backjumps [12]. In each step, an
instance of the program that contains k copies of the loop body
corresponds to checking a loop-free program, which uses only
if -statements in order to prevent its execution in the case that
the loop ends before k iterations.

Definition 1: (Loop-free Program) A loop-free program
is represented by a straight-line program (without loops) by
providing an ite (θ, ρ1, ρ2) operator, which takes a Boolean
formula θ and, depending on its value, selects either the second
ρ1 or the third argument ρ2, where ρ1 represents the loop body
and ρ2 represents either another ite operator, which encodes
a k-copy of the loop body, or an assertion/assume statement.

Each step of our k-induction algorithm (except for the
base case) transforms a program with loops into a loop-free
program, such that the correctness of the loop-free program
implies the correctness of the program with loops.

If the program consists of multiple and possibly nested
loops, we simply set the number of loop unwindings globally,
that is, for all loops in the program and apply these afore-
mentioned translations recursively. Note that each case of the
k-induction algorithm performs different transformations at the
end of the loop: either to find bugs (base case) or to prove that
enough loop unwindings have been done (forward condition).

B. Program Transformations

In terms of program transformations, which are all done
completely automatically by our proposed method, the base
case simply inserts an unwinding assumption, to the respective
loop-free program P ′, consisting of the termination condition
σ after the loop, as follows I ∧ T ∧ σ ⇒ φ, where I is the
initial condition, T is the transition relation of P ′, and φ is a
safety property.

The forward case inserts an unwinding assertion instead of
an assumption after the loop, as follows I ∧ T ⇒ σ ∧ φ. Our
base case and forward condition translations are implemented
on top of plain BMC. However, for the inductive step of the
algorithm, several transformations are carried out. In particular,
the loop while(c) {E; } is converted into

A;while(c) {S;E;U ; }R; (1)

where A is the code responsible for assigning non-
deterministic values to all loop variables, i.e., the state is
havocked before the loop, c is the exit condition of the loop
while, S is the code to store the current state of the program
variables before executing the statements of E, E is the actual
code inside the loop while, U is the code to update all program
variables with local values after executing E, and R is the code
to remove redundant states.

Definition 2: (Loop Variable) A loop variable is a vari-
able v ⊆ V , where V = Vglobal ∪ Vlocal given that Vglobal
is the set of global variables and Vlocal is the set of local
variables that occur in the loop of a program.

Definition 3: (Havoc Loop Variable) A nondeterministic
value is assigned to a loop variable v if and only if v is used
in the loop termination condition σ, in the loop counter that
controls iterations of a loop, or modified inside the loop body.

The intuitive interpretation of S, U , and R is that if the current
state (after executing E) is different than the previous state
(before executingE), then new states are produced in the given
loop iteration; otherwise, they are redundant and the code R
is then responsible for preventing those redundant states to be
included into the states vector. Note further that the code A
assigns non-deterministic values to all loop variables so that
the model checker can explore all possible states implicitly.
Similarly, the loop for can easily be converted into the loop
while as follows: for(B; c;D) {E; } is rewritten as

B; while(c) {E;D; } (2)

where B is the initial condition of the loop, c is the exit
condition of the loop, D is the increment of each iteration over
B, and E is the actual code inside the loop for. No further
transformations are applied to the loop for during the inductive
step. Additionally, the loop do while can be converted into the
loop while with one difference, the code inside the loop must
execute at least once before the exit condition is checked.

The inductive step is thus represented by γ∧σ ⇒ φ, where

γ is the transition relation of P̂ ′, which represents a loop-
free program (cf. Definition 1) after applying transformations

(1) and (2). The intuitive interpretation of the inductive step
is to prove that, for any unfolding of the program, there is
no assignment of particular values to the program variables
that violates the safety property being checked. Finally, the
induction hypothesis of the inductive step consists of the
conjunction between the postconditions (Post) and the ter-
mination condition (σ) of the loop.

C. Invariant Generation

To infer program invariants, we adopted the PIPS [13]
tool, which is an interprocedural source-to-source compiler
framework for C and Fortran programs and relies on a
polyhedral abstraction of program behavior. PIPS performs a
two-step analysis: (1) each program instruction is associated
to an affine transformer, representing its underlying transfer
function. This is a bottom-up procedure, starting from ele-
mentary instructions, then working on compound statements
and up to function definitions; (2) polyhedral invariants are
propagated along with instructions, using previously computed
transformers.

In our proposed method, PIPS receives the analyzed pro-
gram as input and then it generates invariants that are given as
comments surrounding instructions in the output C code. These
invariants are translated and instrumented into the program
as assume statements. In particular, we adopt the function
assume(expr) to limit possible values of the variables
that are related to the invariants. This step is needed since
PIPS generates invariants that are presented as mathematical
expressions (e.g., 2j < 5t), which are not accepted by C
programs syntax and invariants with #init suffix that is used
to distinguish the old value from the new value.

Algorithm 1 shows the proposed method, which receives
as inputs the code generated by PIPS (PIPSCode) with
invariants as comments, and it generates as output a new
instance of the analyzed code (NewCodeInv) with invariants,
adopting the function assume(expr), where expr is an
expression supported by the C programming language. The
time complexity of this algorithm is O(n2), where n is code
size with invariants generated by PIPS. The algorithm is split
into three parts: (1) identify the #init structure in the PIPS
invariants; (2) generate code to support the translation of the
#init structure in the invariant; and finally (3) translate
mathematical expressions contained in the invariants, which is
performed by the invariants transformation in the PIPS format
to the C programming language.

Line 3 of Algorithm 1 performs the first part of the invariant
translation, which consists of reading each line of the analyzed
code with invariants and identifying whether a given comment
is an invariant generated by PIPS (line 4). If an invariant
is identified and it contains the structure #init, then the
invariant location (the line number) is stored, as well as, the
type and name of the variable, which has the prefix #init.

After identifying the #init structures in the invariants, the
second part of Algorithm 1 performs line 10, which consists
of reading each line of the analyzed code with invariants
(PIPSCode), and identifying the beginning of each function
in the code. For each identified function, the algorithm checks
whether that function has identified some #init structure
(line 13). If it has been identified, for each variable that has
the suffix #init, a new line of code is generated at the
beginning of the function, with the declaration of an auxiliary
variable, which contains the old variable value, i.e., its value
at the beginning of the function. During the execution of

Input: PIPSCode - C code with PIPS invariants
Output: NewCodeInv - New C code with invariants

1 dict variniteloc← { }
2 NewCodeInv← { }
// Part 1 - identifying #init

3 foreach line of the PIPSCode do
4 if is a PIPS comment in this pattern // P(w,x)

{w == 0, x#init > 10} then
5 if the comment has the pattern

([a-zA-Z0-9_]+)#init then
6 dict variniteloc[line] ← the variable suffixed #init
7 end
8 end
9 end
// Part 2 - code generation

10 foreach line of PIPSCode do
11 NewCodeInv← line
12 if is the beginning of a function then
13 if has some line number of this function ∈

dict variniteloc then
14 foreach variable ∈ dict variniteloc do
15 NewCodeInv← Declare a variable with this

pattern type var_init = var;
16 end
17 end
18 end
19 end

// Part 3 - correct the invariant format
20 foreach line of NewCodeInv do
21 listinvpips← { }
22 NewCodeInv← line
23 if is a PIPS comment in this pattern // P(w,x)

{w == 0, x#init > 10} then
24 foreach expression ∈ {w == 0, x#init > 10} do
25 listinvpips← Reformulate the expression according

to the C programs syntax and replace #init by
init

26 end
27 NewCodeInv← __ESBMC_assume(concatenate the

invariants in listinvpips with &&)
28 end
29 end

Algorithm 1: Translation algorithm of invariants

this algorithm, a new instance of the code (NewCodeInv)
is generated.

In the third (and final part) of Algorithm 1 (line 20),
each line of the new code instance (NewCodeInv) is read to
convert each PIPS invariant into expressions supported by the
C language. This transformation consists in applying regular
expressions (line 25) to add operators (e.g., from 2j to 2∗j) and
replacing the structure #init to _init. For each analyzed
PIPS comment/invariant, we generate a new code line to the
new format, where this line is concatenated with the operator
&& and added to the __ESBMC_assume function.

III. EXPERIMENTAL EVALUATION

This section is split into two parts. The setup is described in
Section III-A and Section III-B describes a comparison among
DepthK 1, ESBMC [3], CBMC [1], and CPAchecker [5] using
a set of C benchmarks from SV-COMP [14] and embedded
applications [15], [16], [17].

A. Experimental Setup

The experimental evaluation is conducted on a computer
with Intel Xeon CPU E5 − 2670 CPU, 2.60GHz, 115GB
RAM with Linux 3.13.0 − 35-generic x86 64. Each veri-
fication task is limited to a CPU time of 15 minutes and
a memory consumption of 15 GB. Additionally, we defined
the max iterations to 100 (cf. Fig. 1). To evaluate all tools,
we initially adopted 142 ANSI-C programs of the SV-COMP

1https://github.com/hbgit/depthk

2015 benchmarks; in particular, the Loops subcategory; and 34
ANSI-C programs used in embedded systems: Powerstone [16]
contains a set of C programs for embedded systems (e.g.,
for automobile control and fax applications); while SNU real-
time [17] contains a set of C programs for matrix and signal
processing functions such as matrix multiplication and decom-
position, quadratic equations solving, cyclic redundancy check,
fast Fourier transform, LMS adaptive signal enhancement, and
JPEG encoding; and the WCET [15] contains C programs
adopted for worst-case execution time analysis.

We also present a comparison with the tools: DepthK
v1.0 with k-induction and invariants using polyhedra, the
parameters are defined in the wrapper script available in the
tool repository; ESBMC v1.25.2 adopting k-induction without
invariants. We adopted the wrapper script from SV-COMP
20132 to execute the tool; CBMC v5.0 with k-induction, run-
ning the script provided in [5]; CPAChecker3 with k-induction
and invariants at revision 15596 from its SVN repository. The
options to execute the tool are defined in [5].

B. Experimental Results

After running all tools, we obtained the results shown in
Table I for the SV-COMP 2015 benchmark and in Table II
for the embedded systems benchmarks, where each row of
these tables means: name of the tool (Tool); total number
of programs that satisfy the specification (correctly) identified
by the tool (Correct Results); total number of programs that
the tool has identified an error for a program that meets the
specification, i.e., false alarm or incomplete analysis (False
Incorrect); total number of programs that the tool does not
identify an error, i.e., bug missing or weak analysis (True
Incorrect); Total number of programs that the tool is unable to
model check due to lack of resources, tool failure (crash), or
the tool exceeded the verification time of 15 min (Unknown
and TO); the run time in minutes to verify all programs (Time).

We evaluated all tools as follows: for each program we
identified the verification result and time. We adopted the same
scoring scheme that is used in SVCOMP 20154. For every
bug found, 1 score is assigned, for every correct safety proof,
2 scores are assigned. A score of 6 is subtracted for every
wrong alarm (False Incorrect), and 12 scores are subtracted for
every wrong safety proof (True Incorrect). According to [5],
this scoring scheme gives much more value in proving proper-
ties than finding counterexamples, and significantly punishes
wrong answers to give credibility for tool developers. It is
noteworthy that for the embedded systems programs, we have
used safe programs [3] since we intend to check whether we
produce strong invariants to prove properties.

The experimental results related to Loops benchmarks had
shown that the best scores belong to the DepthK, which
combines k-induction with invariants, achieving 140 scores,
ESBMC with k-induction without invariants achieved 105
scores, CPAchecker no-inv k-induction achieved 101 scores,
and CBMC achieved 53 scores. In the embedded systems
benchmarks, we found that the best scores belong to the
CPAchecker no-inv k-induction with 54 scores, ESBMC with
k-induction without invariants achieved 36 scores, DepthK
combined with k-induction and invariants, achieved 34 scores,
and CBMC achieved 30 scores.

2http://sv-comp.sosy-lab.org/2013/
3https://svn.sosy-lab.org/software/cpachecker/trunk
4http://sv-comp.sosy-lab.org/2015/rules.php

We observed that DepthK achieved a lower score in the
embedded systems benchmarks. However, the DepthK results
are still higher than that of CBMC; and in the SV-COMP
benchmark, DepthK achieved the highest score among all
tools. In DepthK, we identified that, in turns, the low score
in the embedded systems benchmarks is due to 35.30% of the
results identified as Unknown, i.e., when it is not possible
to determine an outcome or due to a tool failure. We also
identified failures related to invariant generation and code
generation that is given as input to the BMC procedure. It
is noteworthy that DepthK is still under development (in a
preliminary state), so we argue that the results are promising.

To measure the impact of applying invariants to the k-
induction based verification, we classified the distribution of
the DepthK and ESBMC results, per verification step, i.e., base
case, forward condition, and inductive step. Additionally, we
included the verification tasks that result in unknown and
timeout. In this analysis, we evaluate only the results of
DepthK and ESBMC, because they are part of our solution,
and also because in the other tools, it is not possible to identify
the steps of the k-induction in the standard logs generated by
each tool.

The result distribution shows that DepthK can prove more
than 25.35% and 29.41% of the loops and embedded systems
properties than ESBMC during the inductive step, respec-
tively. These results lead to the conclusion that invariants
help the k-induction algorithm to prove more properties. We
also identified that DepthK did not find a solution in 33.09%
of the programs in the SV-COMP benchmarks and 50% in
the embedded systems benchmarks (producing Unknown and
Timeout). This is explained due to the invariants generated
from PIPS, which are not strong enough for the verification
with the k-induction, either due to a transformer or due to the
invariants that are not convex; and also due to some errors in
the tool implementation. ESBMC with k-induction did not find
a solution in 50.7% of the programs in the SV-COMP bench-
mark, i.e., 17.61% more than DepthK (adding Unknown and
Timeout); and in the embedded benchmarks, ESBMC did not
find a solution in 47.06%, then only 3.64% less than DepthK,
thus providing evidences that the program invariants combined
with k-induction can improve the verification results.

In Table I, the verification time of DepthK to the loops
benchmarks is usually faster than the other tools, except for
ESBMC, as shown in Fig. 2. This happens because DepthK
has an additional time for the invariants generation. In Table II,
we identified that the verification time of DepthK is only
faster than CBMC (see Fig. 3). However, note that the DepthK
verification time is proportional to ESBMC, since the time
difference is 23.5min; we can argue that this difference is
associated to the DepthK invariant generation.

We believe that DepthK verification time can be improved
in two directions: fix errors in the tool implementation, because
some results generated as Unknown are related to failures
in the tool execution; and adjustments in the PIPS script
parameters to generate stronger invariants, since PIPS has a
broad set of commands for code transformation, parameter
tuning might have a positive impact.

IV. RELATED WORK

The k-induction application is gaining popularity in the
software verification community. Recently, Bradley et al. in-
troduce “property-based reachability” (or IC3) procedure for
the safety verification of systems [18], [19]. The authors have

Tool DepthK
ESBMC +
k-induction

CPAchecker no-inv
k-Induction

CPAchecker cont.-ref.
k-Induction (k-Ind InvGen)

CBMC +
k-induction

Correct Results 94 70 78 76 64

False Incorrect 1 0 0 1 3

True Incorrect 0 0 4 7 1

Unknown and TO 47 72 60 58 74

Time 190.38min 141.58min 742.58min 756.01min 1141.17min

TABLE I: Experimental results for the SVCOMP’15 loops subcategory.

Tools DepthK
ESBMC +
k-induction

CPAchecker no-inv
k-Induction

CPAchecker cont.-ref.
k-Induction (k-Ind InvGen)

CBMC +
k-induction

Correct Results 17 18 27 27 15

False Incorrect 0 0 0 0 0

True Incorrect 0 0 0 0 0

Unknown and TO 17 16 7 7 19

Time 77.68min 54.18min 1.8min 1.95min 286.06min

TABLE II: Experimental results for the Powerstone, SNU, and WCET benchmarks.

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Programs of loops category from SVCOMP 2015

T
im

e
(s

)

Tools CBMC CPAchecker (k-Ind InvGen) CPAchecker (k-ind no-inv) DepthK ESBMC

Fig. 2: Verification time to the loops subcategory.

0.1

1

10

100

1000

4 8 12 16 20 24 28 32
Benchmarks of embedded systems

T
im

e
(s

)

Tools CBMC CPAchecker (k-Ind InvGen) CPAchecker (k-ind no-inv) DepthK ESBMC

Fig. 3: Verification time to the embedded systems programs.

shown that IC3 can scale on certain benchmarks, where k-
induction fails to succeed. However, we do not compare k-
induction against IC3 since it is already done by Bradley [18];
we focus our comparison on related k-induction procedures.

Previous work on the one hand have explored proofs by
mathematical induction of hardware and software systems
with some limitations, e.g., requiring changes in the code
to introduce loop invariants [6], [9]. This complicates the
automation of the verification process, unless other methods
are used in combination to automatically compute the loop

invariant [20], [21]. Similar to the approach proposed by [22],
[7], our method is completely automatic and does not require
the user to provide loops invariants as the final assertions after
each loop. On the other hand, state-of-the-art BMC tools have
been widely used, but as bug-finding tools since they typically
analyze bounded program runs [1], [2]. This paper closes this
gap, providing clear evidence that the k-induction algorithm in
combination with invariants can be applied to a broader range
of C programs without manual intervention.

Große et al. describe a method to prove properties of

Transaction Level Modeling designs in SystemC [9]. The
approach consists of converting a SystemC program into a
C program, and then it performs the proof of the properties
by mathematical induction using the CBMC tool [1]. The
difference to the one described in this paper lies on the
transformations carried out in the forward condition. During
the forward condition, transformations similar to those inserted
during the inductive step in our approach, are introduced in the
code to check whether there is a path between an initial state
and the current state k; while the algorithm proposed in this
paper, an assertion is inserted at the end of the loop to verify
that all states are reached in k steps.

Donaldson et al. describe a verification tool called
Scratch [6] to detect data races during Direct Memory Access
in the CELL BE processor from IBM [6]. The approach used
to verify C programs is k-induction, which is implemented
in the Scratch tool using two steps: the base case and the
inductive step. Scratch can prove the absence of data races,
but it is restricted to verify that specific class of problems
for a particular type of hardware. The steps of the algorithm
are similar to the one proposed in this paper, but it requires
annotations in the code to introduce loops invariants.

Kahsai et al. describe PKIND, a parallel version of the tool
KIND, used to verify invariant properties of programs written
in Lustre [23]. To verify a Lustre program, PKIND starts three
processes, one for base case, one for inductive step, and one for
invariant generation, note that unlike ESBMC, the k-induction
algorithm used by PKIND does not have a forward condition
step. This happens because PKIND is used for Lustre programs
that do not terminate. Hence, there is no need for checking
whether loops have been unrolled completely. The base case
starts the verification with k = 0, and increments its value
until it finds a counterexample or it receives a message from
the inductive step process that a solution was found. Similarly,
the inductive step increases the value of k until it receives a
message from the base case process or a solution is found.
The invariant generation process generates a set of candidates
invariants from predefined templates and constantly feeds the
inductive step process, as done recently by Beyer et al. [5].

V. CONCLUSIONS

This paper marks the first application of the k-induction
algorithm to a broader range of embedded C programs. To val-
idate the k-induction algorithm, experiments were performed
involving 142 benchmarks of the SV-COMP 2015 loops
subcategory, and 34 ANSI-C programs from the embedded
systems benchmarks. Additionally, we presented a comparison
to the ESBMC with k-induction, CBMC with k-induction, and
CPAChecker with k-induction and invariants.

The experimental results are promising; the proposed
method adopting k-induction with invariants (DepthK) deter-
mined 11.27% more accurate results than that obtained by
CPAChecker, which had the second best result in the SV-
COMP 2015 loops subcategory. The experimental results also
show that the k-induction algorithm without invariants was
able to verify 49.29% of the programs in the SV-COMP
benchmarks, and k-induction with invariants (DepthK) was
able to verify 66.19% of the benchmarks. We identified that
k-induction with invariants determined 17% more accurate
results than the k-induction algorithm without invariants.

For embedded systems benchmarks, we identified some
improvements in the DepthK tool, related to defects in the
tool execution, and possible adjustments to invariant generation
with PIPS. This is because the results were inferior compared

to the other tools for the embedded systems benchmarks,
where DepthK only obtained better results than CBMC tool.
However, we argued that the proposed method, in comparison
to other state of the art tools, showed promising results
indicating its effectiveness. As future work, we will improve
the robustness of DepthK and tune the PIPS parameters to
produce stronger invariants.

ACKNOWLEDGMENT

The authors acknowledge the support granted by FAPEAM
through process number 1135/2011 (PRONEX), 582/2014 and
1722/2014 (PRO-TI-PESQUISA), and by CNPq 475647/2013-
0 (UNIVERSAL).

REFERENCES

[1] D. Kroening and M. Tautschnig, “CBMC - C Bounded Model Checker -
(Competition Contribution),” in TACAS. Springer, 2014, pp. 389–391.

[2] F. Merz, S. Falke, and C. Sinz, “LLBMC: bounded model checking of
C and C++ programs using a compiler IR,” in VSTTE. Springer-Verlag,
2012, pp. 146–161.

[3] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-Based Bounded
Model Checking for Embedded ANSI-C Software,” in TSE. IEEE,
2012, pp. 957–974.

[4] F. Ivancic, I. Shlyakhter, A. Gupta, and M. K. Ganai, “Model Checking
C Programs Using F-SOFT,” in ICCD. IEEE Computer Society.

[5] D. Beyer, M. Dangl, and P. Wendler, “Combining k-Induction with
Continuously-Refined Invariants,” CoRR, vol. abs/1502.00096, 2015.
[Online]. Available: http://arxiv.org/abs/1502.00096

[6] A. F. Donaldson, D. Kroening, and P. Ruemmer, “Automatic Analysis
of Scratch-pad Memory Code for Heterogeneous Multicore Processors,”
in TACAS. Springer, 2010, pp. 280–295.

[7] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer, “Software
Verification Using k-Induction,” in SAS. Springer, 2011, pp. 351–368.

[8] N. Eén and N. Sörensson, “Temporal Induction by Incremental SAT
Solving,” ENTCS, pp. 543–560, 2003.

[9] D. Große, H. M. Le, and R. Drechsler, “Induction-Based Formal
Verification of SystemC TLM Designs,” in MTV, 2009, pp. 101–106.

[10] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT-Solver,” in FMCAD. Springer, 2000, pp.
108–125.

[11] M. Ramalho, L. Cordeiro, A. Cavalcante, and V. L. Jr, “Verificação
Baseada em Indução Matemática de Programas C/C++,” in SBESC.
SBC, 2013, pp. 1–6.

[12] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[13] M. ParisTech, “PIPS: Automatic Parallelizer and Code Transformation
Framework,” Available at http://pips4u.org, 2013.

[14] D. Beyer, “Software Verification and Verifiable Witnesses - (Report on
SV-COMP 2015),” in TACAS. Springer, 2015, pp. 401–416.

[15] MRTC, “WCET Benchmarks,” Mälardalen Real-Time Research Center.
Available at http://www.mrtc.mdh.se/projects/wcet/benchmarks.html,
2012.

[16] J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the Low-Power
M*CORE Architecture,” in PDM, 1998, pp. 145–150.

[17] SNU, “SNU Real-Time Benchmarks,” Available at
http://www.cprover.org/goto-cc/examples/snu.html, 2012.

[18] A. R. Bradley, “IC3 and beyond: Incremental, Inductive Verification,”
in CAV. Springer, 2012, p. 4.

[19] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in
IC3,” in FMCAD. IEEE, 2013, pp. 157–164.

[20] R. Sharma, I. Dillig, T. Dillig, and A. Aiken, “Simplifying loop invariant
generation using splitter predicates,” in CAV. Springer-Verlag, 2011,
pp. 703–719.

[21] C. Ancourt, F. Coelho, and F. Irigoin, “A Modular Static Analysis
Approach to Affine Loop Invariants Detection,” in ENTCS. Elsevier
Science Publishers B. V., 2010, pp. 3–16.

[22] G. Hagen and C. Tinelli, “Scaling up the formal verification of Lustre
programs with SMT-based techniques,” in FMCAD. IEEE, 2008, pp.
109–117.

[23] T. Kahsai and C. Tinelli, “Pkind: A parallel k-induction based model
checker,” in PDMC, 2011, pp. 55–62.

