
XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

Verifying Fixed-Point Digital Filters using SMT-
Based Bounded Model Checking

Renato B. Abreu, Lucas Cordeiro, and Eddie B. L. Filho

Abstract—The implementation of digital filters in processors

based on fixed-point arithmetic can lead to problems related to

the finite word-length. In particular, the processing of signals in

such filters can produce overflows and unwanted noise caused by

quantization and round off effect during the accumulative

addition and multiplication operations. In this paper, we describe

a new approach to verify digital filters using an off-the-shelf

bounded model checker called ESBMC, which supports full

C/C++ and is based on satisfiability modulo theories solvers. In

particular, we are able to verify the occurrence of overflows, limit

cycles, and time constraints based on a discrete-time model

implemented in C. The experiments show that the proposed

approach can be used to verify potential problems in fixed-point

implementation of digital filters and it can thus be effective in

finding realistic design errors.

Keywords—fixed-point filters, formal methods, bounded

model checking.

I. INTRODUCTION

Digital filters have been widely used for digital signal
processing applications due to its reduced computational
complexity and flexibility enabled by available digital signal
processors (DSPs) and field programmable gate arrays
(FPGAs). Recently, the availability of floating-point processors
has substantially grown, but the reduced cost and the high
speed of fixed-point processors still make it the choice for the
embedded digital filters projects. However, fixed-point
implementation leads to quantization nonlinearities, round off
errors, and overflows caused by consecutives multiplications
and additions operations using finite word-length; and these
may affect the desired behavior of the filter. As an example, for
direct form realizations, only a small change on filter
coefficients due to parameter quantization can result in a large
change in the location of the poles and zeros of the system [1].
In recursive digital filters, most known as infinite impulse
response (IIR) filters, can present serious oscillations in the
output even for a zero input signal, which is a phenomenon
known as limit cycle. Finite impulse response (FIR) filters do
not suffer from such limit cycle effects, but they may have
other issues caused by the finite word-length limitations (e.g.,
overflows). There are many studies about the quantization and
limit cycle in digital filters, and ways to reduce its effects, as
previously reported in [2], [3].

Apart from that, an important property to implement a
digital filter for real-time applications is its time constraint.
Modern microcontrollers and DSPs allow programming in
high-level languages such as C. The filter program is compiled
to low level instructions that consume clock cycles to be
processed. That processing time must meet some constraints
according to the system sample frequency and available buffer.
Normally, the filter designers employ advanced tools to define

filter parameters according to the desired operation in time and
frequency domains, and use simulation software to validate
their behavior under extensive tests. In most cases, they
consider floating-point arithmetic in calculations. There are a
few tools to simulate systems using fixed-point arithmetic [4],
[5]. Search algorithms to determine the minimum bound of the
word-length are also presented in [6] in which the authors
adopt a simulation-based approach. However, testing and
simulation can lead to a limited number of scenarios and inputs
in the system, which thus do not exploit all possible behaviors
that the system can exhibit. Hence, only frequency domain
graphical analysis and simulation might not be sufficient to
conclude about possible problems related to finite word-length
implementation as well as time constraints of the filters.

Recently, some alternative technique has been proposed for
the verification of fixed-point implementations of IIR digital
filters, which is based on bounded model checking (BMC) and
suggests the use of modern satisfiability modulo theory (SMT)
solvers [7]. The main idea behind SMT-Based BMC is to
consider counterexamples of a particular length k and generate
a first-order logic formula that is satisfiable if and only if such
a counterexample exists [8]. In this paper, we describe the use
of a general purpose SMT-based bounded model checker for
embedded C/C++ software to verify potential issues caused by
fixed-point arithmetic on recursive filters; it makes two major
contributions. First, we consider the processing time of
operations during the filter function unrolling to check for the
maximum acceptable time of the filter operations. Second, we
exploit BMC to verify the actual C code of the digital filter that
is intended to be embedded into micro-controllers and DSPs;
this is closer to the real implementation where specific C
constructs (e.g., pointer arithmetic and comparisons) are used
to implement the digital filter. Last but not least, the
application of SMT-based BMC to digital filters might not be
well known amongst DSP developers and so this work can
potentially add value to them.

II. FIXED-POINT FILTERS REALIZATION

Digital filters can be defined as linear time-invariant
discrete-time systems described by a difference equation as:

���� = −��		y�n − k�
�

	��
+ ��	 	x�n − k�

�

	��
							�1�

where y(n) is the output in instant n, y(n-k) is the output k steps
in the past, x(n-k) are the inputs k steps in the past, ak are the
coefficients for the past outputs, bk are the coefficients for the
inputs, N is the feedback filter order, and M is the feedforward
filter order. The design of a digital filter mainly consists of
finding the values of the coefficients ak and bk that produce the
expected frequency response. The filters are usually classified

Renato B. Abreu1,2, Lucas Cordeiro2, and Eddie B. L. Filho2,3 ¸ 1 Nokia Institute
of Technology; 2 Department of Electronics and Computing, Federal University of
Amazonas; and 3 Science, Technology, and Innovation Center for the Manaus
Industrial Pole, Manaus-AM, Brazil, E-mails: renato.abreu@indt.org.br,
lucascordeiro@ufam.edu.br, eddie@ctpim.org.br.

XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES

according to their ideal frequency domain characteristics
out of the scope of this paper to show IIR and FIR filters
design methods. This is a huge topic that is covered in standard
digital signal processing books [1], [9]. There are many ways
to implement (1) in hardware, or in software on a
programmable digital computer depending on the realization
structure of the system. The commonly known Direct Form I
realization for IIR systems is shown in Fig. 1. For the
demonstration of the proposed method, Direct Form I structure
was chosen to be implemented in the C language.

Figure 1. Direct Form I structure of IIR filter

In the realization of fixed-point digital filters, the
coefficients and the results of intermediate computations suff
the effect of quantization and round off errors. Here, we have
considered the round off quantizer Q(x); for this quantizer, the
maximum error caused by rounding is 2-b-

number of bits that belongs to the fractional part.
where the result from an addition or multiplication exceeds the
amount of bits available for the number representation, we say
that there is an overflow. For the limit cycle verification, we
allow the overflows to naturally happen.
considered the two’s complement arithmetic so that when the
overflow occurs, the result will wrap around. Fig. 2 shows the
behavior of the round off quantizer and the effect of the two’s
complement overflow wrapping around.

Figure 2. Round off quantizer of b bits with wrap around

To obtain a realistic model of the finite precision system,
we consider the quantization of each numeric value in the
system including inputs, coefficients, and results of arithmetic
operations. Fig. 3 shows this model for a single

Figure 3. Realistic model of a single-pole quantized filter

XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

according to their ideal frequency domain characteristics. It is
to show IIR and FIR filters

design methods. This is a huge topic that is covered in standard
There are many ways

to implement (1) in hardware, or in software on a
programmable digital computer depending on the realization
structure of the system. The commonly known Direct Form I
realization for IIR systems is shown in Fig. 1. For the

proposed method, Direct Form I structure
was chosen to be implemented in the C language.

Direct Form I structure of IIR filter.

point digital filters, the
ntermediate computations suffer

the effect of quantization and round off errors. Here, we have
or this quantizer, the

-1, where b is the
number of bits that belongs to the fractional part. In a case

the result from an addition or multiplication exceeds the
amount of bits available for the number representation, we say

. For the limit cycle verification, we
happen. We have thus

wo’s complement arithmetic so that when the
overflow occurs, the result will wrap around. Fig. 2 shows the
behavior of the round off quantizer and the effect of the two’s

bits with wrap around overflow.

To obtain a realistic model of the finite precision system,
we consider the quantization of each numeric value in the
system including inputs, coefficients, and results of arithmetic
operations. Fig. 3 shows this model for a single-pole filter.

pole quantized filter.

Here, we represent numbers in fixed
pair of digits separated by a decimal point. The digits to the left
and right represent the integer and fractional part
respectively. We use the two’s complement to represent signed
number in fixed-point processors. In this system, the real
number X described by the 〈�
(bk-1 bk-2 … b1 b0 · b-1 b-2 … b-l) can be represented as:

� = −�	��2

The most significant bit -bk

maximum value representable by a number that consists of an
integer part with k bits and a fractional part with
2	�� − 2��, and the minimum value is
represented in Fig. 3 by the block Q rounds the numbers inside
this range. If a number does not fit in this interval, then it
indicates an overflow. During the verification of the filter,
check the overflow as a failure in the system, or th
wraps around the result (as shown in Fig. 2)

III. SMT-BASED BMC

The basic idea of BMC is to check (the negation of) a given
property at a given depth: given a transition system
property ϕ, and a bound k, BMC
translates it into a verification condition (VC)
satisfiable if and only if ϕ has a
than or equal to k. Standard SMT
whether ψ is satisfiable. In BMC
limits the number of loop iterations and recursive
program. BMC thus generates VCs that reflect the exact path in
which a statement is executed, the context in which a given
function is called, and the bit
expressions [8]. Proving the validity of the VCs arising
programs remains a major performance bottleneck, despite
attempts to cope with increasing system complexity
applying SMT solvers. In this work, we used the
SMT-Based Bounded Model Checker (
verification engine since it was the most e
the last two software verification competitions
ESBMC, the associated SMT
formulated by constructing the following logical formula

�� = �� ��⋀"#
$

%

	

$��
Here, ϕ is a safety property

initial states of M, and &' % , %)
between time steps j and j+1.

represents the executions of M

ψ	can be satisfied if and only if for some
reachable state at time step i in which
satisfiable, then the SMT solver provides a satisfying
assignment, from which we can
program variables to construct a counterexample.
counterexample for a property
of states �, �, … , 	 	with � ∈
0 - . / �. If �3� is unsatisfiable,
error state is reachable in k steps or less.

In this work, we propose the following steps for the design
and verification of a digital filter. First, we
parameters using the preferred methods
(cf. [12]). After that, we estimate the out
input range to define the word

4 DE SETEMBRO DE 2013, FORTALEZA, CE

represent numbers in fixed-point format using a
pair of digits separated by a decimal point. The digits to the left

represent the integer and fractional parts,
e two’s complement to represent signed

point processors. In this system, the real
〈�, 1〉 fixed-point position number

can be represented as:

2	�� + � �2
��

$�	�3
																					�2�

k-1 is used for the sign. Thus, the
maximum value representable by a number that consists of an

bits and a fractional part with l bits is
, and the minimum value is −2	��. The quantizer

represented in Fig. 3 by the block Q rounds the numbers inside
this range. If a number does not fit in this interval, then it
indicates an overflow. During the verification of the filter, we
check the overflow as a failure in the system, or the quantizer
wraps around the result (as shown in Fig. 2).

BMC OF DIGITAL FILTERS

BMC is to check (the negation of) a given
at a given depth: given a transition system M, a

, BMC unrolls the system k times and
translates it into a verification condition (VC) ψ such that ψ is

has a counterexample of depth less
MT solvers can be used to check

In BMC of digital filters, the bound k
limits the number of loop iterations and recursive calls in the
program. BMC thus generates VCs that reflect the exact path in
which a statement is executed, the context in which a given

bit-accurate representation of the
. Proving the validity of the VCs arising from

remains a major performance bottleneck, despite
attempts to cope with increasing system complexity by

In this work, we used the Efficient
Based Bounded Model Checker (ESBMC) tool as the

since it was the most efficient BMC tool in
the last two software verification competitions [10], [11]. In

SMT-based BMC problem is
formulated by constructing the following logical formula:

"#&
$��

%��
' % , %)�4⋀5� 6�7777777													�3�

is a safety property (e.g., overflow), I is the set of

)�4 is the transition relation of M
j+1. Hence, �� ��∧⋀ ' % , %)�4$��%��

M of length i. The above VC

fied if and only if for some 8 - � there exists a
in which ϕ is violated. If �3� is

satisfiable, then the SMT solver provides a satisfying
assignment, from which we can extract the values of the

to construct a counterexample. A
or a property ϕ is then defined as a sequence

∈ 9�, 	 ∈ 9, and &' % , %)�4 for
is unsatisfiable, then we can conclude that no

steps or less.

In this work, we propose the following steps for the design
filter. First, we design the filter

using the preferred methods (cf. [1], [9]) and tools
. After that, we estimate the output range for a given

input range to define the word-length to represent the fixed-

XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

point numbers. Once we define the word-length, we input the
respective design parameters into the C filter model and then
perform time analysis of filter operations using specific
microprocessor architecture. Finally, we add assertions to the
given C model to check for properties related to time
constraints, under and overflow, and limit cycle. If we find an
under and overflow, or a limit cycle violation, then we increase
the word-length and call the verification engine again. If we
find a time constraint violation, then it indicates that we have to
decrease the word-length to improve the performance.

A. Arithmetic Underflow and Overflow Verification

During the design of a fixed-point filter, one needs to
specify the number of integer and fractional bits. Firstly, one
needs to estimate the output range of the filter for a given input
range; this estimation is typically based on analytical- or
simulation-based approaches. Several authors have proposed
techniques to find the word-length for the coefficients of digital
filters as in [13], [14]. However, to detect overflows in a digital
filter with a given fixed-point word-length and expected input
range, we add assertions into the quantizer block and configure
the verification engine to use non-deterministic inputs in the
specified range. For any result of addition or multiplication in
the filter operation, if there exists a value that exceeds the
range representable by the fixed-point, an assert statement
detects it as an underflow or overflow violation. We generate a
literal 1:;<=_?= to represent the validity of each addition and
multiplication operation with the following constraint:

1:;<=_?= ⟺ �A�B - CD� 	∧ �CD - AF�� (4)

where FP is the fixed-point approximation for the result of the
adders and multipliers; MIN and MAX are the minimum and
maximum values that are representable for the given fixed-
point bit format (as we previously described in Section II). As a
running example, let us consider a single pole system described
by the following difference equation [1]:

���� = −�	y�n − 1� + x�n�																						�5�
This is a bounded-input bounded-output (BIBO) stable

system in which the output is limited in amplitude to:

|����| - IJKL � |ℎ	|
N

	��N
																									�6�

where xmax is the maximum input value and hk is the impulse
response of the system. For the Eq. (5) with a = -1/2, it can be
shown that the summation of the norm of the impulse response
converges to 2 using geometric series. For this particular
example, if we consider an input in the range [-1, 1], the output
will be [-2, 2] (i.e., we simply multiply the input range by
∑|ℎ	|). If we have this for the implementation, one could
choose to represent the fixed-point number using 2 bits for
integer part including the sign and 4 bits for the fractional part.
The resulting range for this particular format is [-2, 1.9375],
with an error of ±0.03125.

Using the proposed method, we apply the coefficients of (5)
to the filter implemented in the C language and then define the
number of bits for the integer and the fractional parts of the
fixed-point number. If we run the verification engine by taking
into account the input range [-1, 1], then it shows a
counterexample in which the system gets an overflow for a
particular sequence of inputs. It can be easily shown that an
input sequence x = {1, 1, 1, 1, 1, 1} leads to an overflow in the
output as shown in Table I.

TABLE I. EXAMPLE OF OVERFLOW IN FIXED-POINT FILTER

n 1 2 3 4 5 6

x(n) 1 1 1 1 1 1

y(n) 1 1.5000 1.7500 1.8750 1.9375 1.96875*

*. Considering 4 bits to fractional part, value is out of range [-2, 1.9375]

For this particular case, one could easily infer about the
overflow by analyzing the impulse response summation or by
simulating a constant step input. However, for high order
systems, it can be difficult to precisely evaluate about the
impulse response infinite summation or find an input sequence
that leads to overflow, as also observed by [7]; this thus
motivates the application of BMC to digital filters.

B. Limit cycle Verification

In an ideal stable filter, the output should asymptotically
approach a steady-state level determined by the filter transfer
function [15]. The limit cycle can manifest either as a steady
oscillation or as a nonzero level in the output, even for a zero
level input. This effect is caused by the round off errors and
overflows during the filter operation. To verify the presence of
limit cycle in a particular fixed-point filter realization, we
configure the quantizer block routine by setting a flag variable
on it to enable the wrap around on overflows. The expected
behavior will be as shown in Fig. 2, which means that the
verification engine is not expected to detect the overflow
failures as in the previous case. Additionally, we configure the
filter to use a zero input signal and a non-deterministic initial
state for the previous outputs. We thus unroll the filter
execution for a bounded number of entries and add an assert
statement to detect a failure if a set of previous outputs states
(that repeats during the zero-input response) is found. Note that
this method is slightly different from that presented by Cox et
al. [7], which aims at finding a limit cycle by comparing a
window of the output with another window of the output within
a bounded number of steps later.

As an example, let us consider the same system described
by the difference equation in (5). Here, we also model the
system using 2 bits for the integer part and 4 bits for the
fractional part as in the previous case, but now we set a zero
input signal instead. If we execute the verification engine for
the implemented model, then it finds a particular initial
condition that leads the system to a limit cycle. In Table II, we
present the response of the system for that particular condition.
Note that the columns y2 and y10 represent the filter response in
binary and decimal format, respectively. Due to the rounding
on the fractional part of the fixed-point number, we can see in
Table II that for a = 0.5 the output starts to repeat after n = 2.
Similarly, for a = -0.5, we can see that it keeps a nonzero
steady-state value instead of decaying to zero.

TABLE II. LIMIT CYCLES FOR SINGLE POLE FILTER

a = 0.510 = 0.10002 a = -0.510 = 1.10002

n y2 y10 n y2 y10

-1 0.0010 0.125* -1 0.0010 0.125*

0 1.0001 -0.0625 0 0.0001 0.0625

1 0.0001 0.0625 1 0.0001 0.0625

2 1.0001 -0.0625 2 0.0001 0.0625

3 0.0001 0.0625 3 0.0001 0.0625

*. Initial condition found as counterexample

XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

C. Time Constraints Verification

There are efficient structures for the implementation of
filters such as Lattice form and filtering methods based on the
Fast Fourier transform [1]. These methods aim to reduce the
number of arithmetic operations and computations costs.
However, the time-domain convolution methods based on
direct forms are still prevalent, both in hardware and in
software implementations, due to its simplicity. In real-time
applications, filter receives data at the same rate it processes
and outputs it. As a result, the verification of time constraints
becomes necessary, especially in high order filters, which
present more arithmetic operations and higher group delays.

In the proposed approach, we use the filter model to check
and assert about the maximum acceptable time for the filter
operations to be processed. As an example, we implemented an
IIR filter function and compiled it to run on a MSP430G2231,
which is an ultra-low-power 16-bit RISC CPU based
microcontroller [16]. If we configure the compiler to generate
the assembly file and merge it together with C source code,
then we can perform a worse case execution time (WCET)
analysis in the IIR function. As an example, the code fragment
shown in Fig. 4 is used to perform the multiplication of the bk
coefficients with the previous entries in Eq. (1). Fig. 5 shows
the code of Fig. 4 converted into some assembly instructions
using the compiler CCS v4 [17]:

sum += *b_ptr++ * *x_ptr--;

Figure 4. C code fragment of the digital filter.

MOV.W @r9+,r12 5 cycles

MOV.W @r9+,r13 5 cycles

SUB.W #4,r10 5 cycles

MOV.W 4(r10),r14 3 cycles

MOV.W 6(r10),r15 3 cycles

CALL #__fs_mpy 5 cycles

MOV.W r7,r14 1 cycle

MOV.W r8,r15 1 cycle

CALL #__fs_add 5 cycles

MOV.W r12,r7 1 cycle

MOV.W r13,r8 1 cycle

Figure 5. Assembly instructions of the code fragment shown in Fig. 4.

We can see that each instruction can take a different number
of clock cycles to execute. Based on that information, we can
compute how many clock cycles will be needed for each
operation. For the MSP430G2231, the internal frequency is up
to 16 MHz that gives a cycle time of 62.5 ns. Once we have the
total time of the instructions, then we can use this to increment
a timer variable and add an assert statement to detect any
violation of time constraints. The value of the constraint can be
easily estimated based on the sample rate of the system. If the
system operates using a sample rate of 48 KHz (which is
commonly used in digital audio systems), then it means that at
every 20.8 microseconds a new data is obtained in the input, so
the filter function has to process the output within this time.
Formally, we generate a literal 1QJRS to represent the validity
of the time response with the following constraint:

1QJRS ⟺ ��B × U� - V�																								�7�
where N is the number of cycles spend by the filter, T is the
cycle time and D is the deadline.

IV. EXPERIMENTAL EVALUATION

This section is split into two parts. The experimental setup
is described in Section IV-A while Section IV-B describes the
results of verifying the digital filters benchmarks using the
proposed approach. Note that we do not compare the proposed
approach against that presented by [7] since here we model
check the actual C code of the digital filters that are intended to
be embedded into micro-controllers and DSPs; this is much
closer to the real implementation where specific C constructs
(e.g., pointer arithmetic and comparisons) are used to
implement Eq. (1); and these make the VCs harder.

A. Experimental Setup

In Table III, we describe some filters chosen with different
design types, number of feedback coefficients N, number of
forward coefficients M, input range, and word-length. Note that
the column Bits indicates the word-length for the integer and
fractional parts of the fixed-point numbers including the bit for
sign. Note further that the word-length for the fixed-point
representation is estimated based on the ∑|ℎ	| summation and
input range in order to obtain optimized filters in terms of
reduced number of bits.

For the evaluation of time constraints, we considered the
restrictions of a 16 MHz processor operating on a system in
which the sample rate is 48 KHz. Note that the sample rate of
the system does not interfere in overflow and limit cycle
conditions, since this is just a consequence of the fixed-point
arithmetic. Here, we used ESBMC v1.21 (which is available at
www.esbmc.org together with the benchmarks so that other
researchers can reproduce the results) and configured it to use
the SMT solver Z3 v3.2 [18] with the bit-vector arithmetic
enabled since it produces fewer false alarms than integer and
real arithmetic (as also observed by Cox et al. [7]). For each
benchmark, we invoked the verification engine as follows:

esbmc <file> --no-bounds-check --no-

pointer-check --no-div-by-zero-check

Note that we disable the array bounds, pointer safety, and
division by zero assertions since we are interested in checking
only filter related properties as previously described in Section
III. The above ESBMC call is thus used to check safety
properties related to arithmetic underflow and overflow. To
check for limit cycle and time constraints, we simply add the
options --function limitCycle and --function
timing to the above ESBMC call, respectively.

All the experiments were conducted on an otherwise idle
Intel Core i7-2600, 3.40 GHz with 24 GB of RAM running
Fedora 64-bits. For all digital filters, the individual time limit
has been set to 3600 seconds; the times given were measured
using the time command.

B. Experimental Results

After selecting the digital filters, we used their parameters
as input to the model implemented in C. Table III summarizes
the results obtained for the filters that we verified using
ESBMC. It shows the type of failures that we detected on each
filter; and we classify them as OF for Overflow, LC for Limit
Cycle, and TC for Time Constraint violation. The column Xsize
shows the number of entries that are applied to the filter, which
thus represents the unwinding bound of the program (i.e., the
filter function). The verification time (given in seconds) is also
shown for each type of failure assertion. Here, TO represents
the time-outs (i.e., the tool is aborted after 3600 seconds).

XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

TABLE III. SUMMARY OF RESULTS FOR THE TESTED DIGITAL FILTERS*

Filter** N M ∑|hk| Input Bits Xsize Failures
Verification Time (s)

OF LC TC

1 LP-IIR 2 1 2 [-1,1] <2,4> 6 OF, LC 39 4 <1

2 LP-Butterworth-IIR 3 3 1.2 [-1.6,1.6] <2,5> 6 OF 579 634 <1

3 LP-IIR 3 1 4 [-1,1] <3,4> 6 OF, LC 210 29 <1

4 LP-IIR 3 1 1.56 [-1,1] <2,4> 6 - 110 51 <1

5 LP-FIR 1 31 1.93 [-1,1] <2,6> 31 TC TO 98 1

6 HP-ChebyshevI-IIR 3 3 1.33 [-1,1] <2,10> 6 - 853 2058 <1

7 BP-Elliptic-IIR 3 3 1.24 [-1.0,1.0] <2,10> 6 LC 546 474 <1

8 BS-Butterworth-IIR 3 3 1.81 [-1.1,1.1] <2,8> 6 OF 106 1299 <1

9 BP-Elliptic-IIR 5 5 0.91 [-1.1,1.1] <1,8> 10 OF, LC 7 20 <1

10 HP-Butterworth-IIR 5 5 1.58 [-1.27, 1.27] <2,6> 10 LC 2468 1508 <1

11 BP-ChebyshevI-IIR 5 5 1.51 [-1.33, 1.33] <2,6> 10 - TO TO <1

12 HP-Elliptic-IIR 7 7 5.39 [-1,1] <3,13> 14 TC 73 TO <1

*. Analyzed filters and software are available at www.esbmc.org

**. LP – Lowpass, HP – Highpass, BP – Bandpass, BS – Bandstop

As we can see in Table III, the proposed method can detect
failures in digital filters independently of their type, order, or
bit-width. However, the verification time tends to be higher for
high order filters and for longest word-length formats since
these lead to a harder VC, except for the benchmark HP-
Elliptic-IIR where we can conclude in few seconds that
it does not contain any arithmetic underflow and overflow.
Note that we time out to check for overflows in digital filter 5
and 11, which contain a high number of forward and feedback
coefficients, respectively. Note further that we time out to
check for limit cycles in the digital filter 12, which contains the
longest word-length of the fractional part. Apart from that, the
time constraints are easily verified since it only consists of
checking the time response of a sequential piece of code.

V. CONCLUSIONS

In this work, we proposed a new approach to detect failures
in fixed-point digital filters using an off-the-shelf bounded
model checker. It allows the designer to formally check the
given implementation for a specific bit-width and it helps
define the word-length to properly represent numbers. In
particular, the proposed approach supports the designer to
detect problems caused by the finite word-length such as
overflows and limit cycles in IIR filters. The experimental
results show that we can easily detect failures in low and
medium orders digital filters with arbitrary bit-width. However,
the verification of high order filters with longest word-length
tends to be a hard problem due to the large state space
exploration. Additionally, we contributed with a new method
based on WCET analysis together with BMC to verify time
constraints in digital filters. Since we have modeled and
implemented the digital filters in the C language, the proposed
approach could also be applied to other existing BMC tools by
taking advantage of their robustness and efficiency.

REFERENCES
[1] J. G. Proakis, and D. G. Manolakis, Digital Signal Processing:

Principles, Algorithms, and Applications, Upper Saddle River, NJ:
Prentice Hall, ISBN: 0133737624, pp. 582-624, 1996.

[2] S. R. Parker, S. F. Hess, “Limit-cycle oscillations in digital filters”, In
IEEE Transactions on Circuit Theory, vol. 18, no. 6, 1971.

[3] T. A. C. M. Claasen; W. F. G. Mecklenbrauker, and J. B. H. Peek,
"Effects of quantization and overflow in recursive digital filters", In
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
assf-24, no. 6, 1976.

[4] SPW,http://www.synopsys.com/Systems/BlockDesign/DigitalSignalPro
cessing/Pages/Signal-Processing.aspx, SYNOPSYS®, 2013.

[5] Simulink Fixed Point, http://www.mathworks.com/products/simfixed,
MathWorks®, 2013.

[6] W. Sung, Ki-Il Kum, "Simulation-based word-length optimization
method for fixed-point digital signal processing systems", In IEEE
Transactions on Signal Processing, vol. 43, no. 12, pp. 3087-3090, 1995.

[7] A. Cox, S. Sankaranarayanan, and Bor-Yuh E. Chang, "A bit too
precise? Bounded verification of quantized digital filters”, In TACAS,
LNCS 7214, pp. 33-47, 2012.

[8] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded
model checking for embedded ANSI-C software”, In IEEE Transactions
on Software Engineering, vol. 38, no. 4, pp. 957-974, 2012.

[9] A. V. Oppenheim , R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing, 2nd ed, Upper Saddle River, NJ: Prentice Hall, ISBN:
0137549202, 1999.

[10] J. Morse, L. Cordeiro, D. Nicole, and B. Fischer, “Handling unbounded
loops with ESBMC 1.20”, In TACAS, LNCS 7795, pp. 621-624, 2013.

[11] L. Cordeiro, J. Morse, D. Nicole, and B. Fischer, “Context-bounded
model checking with ESBMC 1.17”, In TACAS, LNCS 7214., pp. 533-
536, 2012.

[12] Filter Design and Analysis Tool (FDATool), Signal Processing
Toolbox™, http://www.mathworks.com/help/dsp/ref/fdatool.html, 2013.

[13] E. Avenhaus, “On the design of digital filters with coefficients of limited
word length,” In IEEE Trans. Audio Electroacoust., vol. AU-20, pp.
206-212, 1972.

[14] C. Charalambous and M. J. Best, “Optimization of recursive digital
filters with finite word length,” In IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-22, pp. 424-431,. 1974.

[15] T. Brubaker and J. Gowdy, "Limit cycles in digital filters", In IEEE
Transactions on Automatic Control, vol. 17, pp. 675-677, 1972.

[16] MSP430G2231, Mixed Signal Controller, Texas Instrument,
http://www.ti.com/lit/ds/symlink/msp430g2231-ep.pdf, 2013.

[17] Code Composer Studio Integrated Development Environment for
MSP430, http://www.ti.com/tool/ccstudio-msp430, 2013.

[18] L.M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” In
TACAS, LNCS 4963, pp. 337-340, 2008.

