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Abstract Context-bounded model checking has been used successfully
to verify safety properties in multi-threaded systems automatically, even
if they are implemented in low-level programming languages such as C.
In this paper, we describe and experiment with an approach to extend
context-bounded software model checking to safety and liveness properties
expressed in linear-time temporal logic (LTL). Our approach checks the
actual C program, rather than an extracted abstract model. It converts
the LTL formulas into Büchi automata (BA) for the corresponding never
claims and then further into C monitor threads, which are interleaved with
the execution of the program under analysis. This combined system is then
checked using the ESBMC model checker. We use an extended, four-valued
LTL semantics to handle the finite traces that bounded model checking
explores; we thus check the combined system several times with different
acceptance criteria to derive the correct truth value. In order to mitigate the
state space explosion, we use a dedicated scheduler that selects the monitor
thread only after updates to global variables occurring in the LTL formula.
We demonstrate our approach on the analysis of the sequential firmware of
a medical device and a small multi-threaded control application.

1 Introduction

Model checking has been used successfully to verify actual software (as op-
posed to abstract system designs) [3,9,11,12,46], including multi-threaded
applications written in low-level languages such as C [15,31,40]. In context-
bounded model checking, the state spaces of such applications are bounded
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by limiting the size of the program’s data structures (e.g., arrays) as well
as the number of loop iterations and context switches between the different
threads that are explored by the model checker. This approach is typically
used for the verification of safety properties expressed as assertions in the
code, but it can also be used to verify some limited liveness properties such
as the absence of global or local deadlocks [15].

Many important requirements on the software behaviour can, however,
be expressed more naturally as liveness properties in a temporal logic [18],
for example “whenever the start button is pressed the charge eventually
exceeds a minimum level”. Such requirements are difficult to check directly
as safety properties even on finite program executions; it has typically been
necessary to add additional executable code to the program under analysis
to retain the past state information. This amounts to the ad hoc introduction
of a hand-coded state machine capturing (past-time) temporal formulas.

Here, we instead use context-bounded model checking to validate multi-
threaded C programs directly against (future-time) temporal formulas over
expressions in the global variables of the C program under test. Thus, con-
tinuing the previous example, if the C variables pressed, charge, and min

represent the state of the button, and the current and minimum charge
levels, respectively, then we can capture the requirement with the LTL for-
mula G({pressed} → F {charge>min}).1 In principle, we follow the usual
approach [13,24] to check these formulas; we convert the negated LTL for-
mula (the so-called never claim [23]) into a Büchi automaton (BA) which
is composed with the program under analysis. If the composed system ad-
mits an accepting run, the program violates the specified requirement. Our
approach differs, however, in two key aspects. First, we check the actual C
program, rather than an extracted and abstracted model. We thus convert
the LTL formula’s BA further into a separate C monitor thread and check
the interleavings between this monitor and the program using ESBMC [15],
our context-bounded model checker for C. Second, we extend the truth val-
ues of the LTL expressions to a four-valued lattice describing the least truth
values over various possible future behaviours of a C program with possi-
bly infinite state space. In particular, we consider the explored traces to
be finite prefixes of infinite traces and our four-valued logic describes the
accepting behaviour of the BA for different infinite extensions of the ex-
plored finite traces. In practice, the resulting never claim BA obtained from
commonly used specifications is rather small. The small size allows us to
analyse which states are accepting under the different infinite extensions of
the finite traces. We then check the combined system several times, with dif-
ferent assertions corresponding to the different acceptance criteria, to derive
the correct truth value for the LTL formula. The program’s overall “cor-
rectness” value in the lattice is the weakest truth value for which the model
checker can find a witness that violates the corresponding assertion. This

1 Here and throughout the paper we enclose the embedded C expressions in
curly brackets and typeset them in typewriter font.



Model Checking LTL Properties with Bounded Traces 3

gives us a method to analyse both safety and liveness within the framework
of bounded software model checking.

Our approach avoids the inherent imprecision from abstracting the C
program into a BA, but the monitor has to capture transient behaviour
internal to the program under analysis. The monitor and the program com-
municate via auxiliary variables reporting the truth values of the LTL for-
mula’s inner subexpression. Our tool automatically inserts these variables
on-the-fly, maintains them, and also uses them to guide ESBMC’s thread
exploration. In order to support this addition efficiently, we have extended
ESBMC’s scheduler so that the monitor thread is scheduled only after up-
dates to global variables.

Our paper makes two main contributions, one theoretical, one practical.
On the theoretical side, it describes techniques that allow a bounded model
checker to give meaningful information about liveness properties of poten-
tially non-terminating programs. On the practical side, it describes the first
mechanism, to the best of our knowledge, to verify LTL properties against
an unmodified C code base, which can include multi-threaded code using
the standard pthreads library [26].

Organisation. This article is a substantially revised and extended version
of our SEFM 2011 contribution [37]. The major differences are that: (i)
we now use a four-valued LTL semantics to make judgements based on the
finite traces that bounded model checking explores and check the system
several times with different BA acceptance criteria to derive the correct
truth value; (ii) we now handle multi-threaded code; (iii) we implemented
a dedicated scheduler which speeds up the analysis dramatically; and (iv)
we extended our evaluation with new examples. The remainder of the paper
is organised as follows: in the next two sections we give the necessary back-
ground, first on the ESBMC context-bounded model checker (Section 2),
and then on LTL (Section 3). In Section 4, we then describe our approach
to characterizing the runs of a BA according to our four-valued semantics.
In Section 5 we demonstrate by examples how this approach can be used to
handle different classes of LTL properties. We then describe in more detail
the implementation (Section 6) and two case studies (Section 7), before we
finally discuss related work and conclude.

2 Bounded Model Checking with ESBMC

ESBMC is a context-bounded symbolic model checker for C software, which
allows the verification of single- and multi-threaded programs with shared
variables and locks [15,17]. ESBMC can verify programs that make use
of bit-operations, arrays, pointers, structs, unions, memory allocation and
some floating-point arithmetic. It can reason about arithmetic under- and
overflows, pointer safety, memory leaks, array bounds violations, atomicity
and order violations, local and global deadlocks, data races, and user-defined
assertions. The latter can be specified at arbitrary program locations using
the usual C assert-statements.
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In ESBMC, the program to be analysed is modelled as a state transi-
tion system M = (S,R, S0), which is extracted from the control-flow graph
(CFG). S represents the set of states, R ⊆ S×S represents the set of transi-
tions (i.e., pairs of states specifying how the system can move from state to
state) and S0 ⊆ S represents the set of initial states. A state s ∈ S consists
of the value of the program counters of all threads and the values of all
program variables. An initial state s0 assigns the initial program location
of the CFG to the program counter of the main thread. We identify each
transition γ = (si, si+1) ∈ R between two states si and si+1 with a logi-
cal formula γ(si, si+1) that captures the constraints on the corresponding
values of the program counters and the program variables.

Given the transition system M, a proposition φ, a context switch bound
C and a bound k, ESBMC builds a reachability tree (RT) that represents
the program unfolding for C, k and φ. It then derives a verification condition
ψπk for each given interleaving of statements (or computation path) π such
that ψπk is satisfiable if and only if φ has a counterexample of depth less
than or equal to k that is exhibited by π. ψπk is given by the following
logical formula:

ψπk = I(s0) ∧
k∨
i=0

i−1∧
j=0

γ(sj , sj+1) ∧ ¬φ(si) (1)

Here, I characterises the set of initial states of M and γ(sj , sj+1) is
the transition relation of M between steps j and j + 1, as above. Hence,
I(s0) ∧

∧i−1
j=0 γ(sj , sj+1) represents executions of M of length i and ψπk can

be satisfied if and only if for some i ≤ k there exists a reachable state along
π at time step i in which φ is violated. ψπk is a quantifier-free formula in
a decidable subset of first-order logic, which is checked for satisfiability by
an SMT solver. If ψπk is satisfiable, then φ is violated along π and the SMT
solver provides a satisfying assignment, from which we can extract the val-
ues of the program variables to construct a counterexample or witness. A
counterexample for a property φ is a sequence of states s0, s1, . . . , sk with
s0 ∈ S0, si+1 ∈ S, and γ (si, si+1) for 0 ≤ i < k. If ψπk is unsatisfiable,
we can conclude that no error state is reachable in k steps or less along π.
Finally, we can define ψk =

∨
π ψ

π
k and use this to check all paths. However,

ESBMC combines symbolic model checking with explicit state space explo-
ration; in particular, it explicitly explores the possible interleavings (up to
the given context bound) while it treats each interleaving itself symbolically.
ESBMC implements several variations of this approach, which differ in the
way they exploit the RT. The most effective variation simply traverses the
RT depth-first, and calls the single-threaded BMC procedure on the inter-
leaving whenever it reaches an RT leaf node. It stops when it finds a bug,
or has systematically explored all possible RT interleavings.
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3 LTL over Infinite and Finite Traces

3.1 Linear-time Temporal Logic

LTL is a specification logic commonly used in model checking [10,25,28],
which extends propositional logic by including temporal operators.

Definition 1 LTL formulas are defined over primitive propositions, logical
operators and temporal operators as follows:

ϕ,ψ ::= true | false | p | ¬ϕ | ϕ ∨ ψ
| Xϕ | Fϕ | Gϕ | ϕUψ | ϕRψ

Here, p is a C expression over the global variables of the program under
analysis; p must not have side effects. In ESBMC’s LTL notation, these
expressions must be enclosed in curly brackets and are treated as truth
values according to C semantics. We define the remaining logical operators
in the usual way. We use the mathematical notation for LTL formulas, and
C style notation inside the embedded C expressions. The temporal operators
are “in the next state” or next (X), “in some future state” or eventually (F),
“in all future states” or globally (G), until (U), and release (R). ϕUψ means
that ϕ must hold continuously until ψ holds; ψ must eventually become
true. ϕRψ means that ψ must hold now and continue to hold either until
ϕ becomes true as well, or forever (if ϕ never becomes true). All temporal
operators can be defined in terms of X and U [36], but we use the full set of
operators here.

In the standard semantics [39], LTL formulas are interpreted over traces
over a given alphabet Σ of symbols, i.e., possibly infinite words a0a1 · · · ,
with ai ∈ Σ. In LTL model checking, it is common to consider a non-empty
set of atomic or primitive propositions Prop and to define Σ = 2Prop . Each
symbol a ∈ Σ denotes a valuation, the set of Boolean expressions over the
global variables of the C program that hold at a given time; it can be seen
as a possible world in a Kripke structure. We use u ∈ Σ∗ to denote finite
traces, w ∈ Σω to denote infinite traces, and ε to denote the empty trace.
We further use wi = wiwi+1 . . . to denote the suffix of an infinite trace; for
a finite trace of length n, ui = uiui+1 · · ·un−1 if i < n and ε otherwise.
We finally use the notation aω to denote the infinite trace consisting of the
letter a ∈ Σ only.

We follow the exposition by Bauer et al. [6] and use finite deMor-
gan lattices as truth domains. A deMorgan lattice is a distributive lattice
(L,t,u,>,⊥) where every element x ∈ L has a dual element x ∈ L such
that x = x and x v y implies y v x; here, v is the partial order induced
by the lattice structure. Note that not every deMorgan lattice is a Boolean
lattice, because duals are not proper complements (i.e., x u x = ⊥ is not
necessarily true), but the converse holds, and in particular the Boolean lat-
tice over the standard two-valued truth domain B2 = {⊥,>} is a deMorgan
lattice with ⊥ v >.
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Propositional constants.

[w |= true]ω => [w |= false]ω =⊥ [w |= p]ω =

{
> iff p ∈ w0

⊥ iff p 6∈ w0

Propositional operators.

[w |= ϕ ∨ ψ]ω = [w |= ϕ]ω t [w |= ψ]ω [w |= ¬ϕ]ω = [w |= ϕ]ω

Temporal operators.

[w |= Xϕ]ω = [w1 |= ϕ]ω

[w |= Fϕ]ω =

{
> iff [wi |= ϕ]ω = > for some i ≥ 0
⊥ otherwise

[w |= Gϕ]ω =

{
> iff [wi |= ϕ]ω = > for all i ≥ 0
⊥ otherwise

[w |= ϕUψ]ω =


> iff [wi |= ψ]ω = > for some i ≥ 0

and [wj |= ϕ]ω = > for all 0 ≤ j < i
⊥ otherwise

[w |= ϕRψ]ω =


> iff [wi |= ψ]ω = > for all i ≥ 0

or [wi |= ϕ]ω = > for some i ≥ 0
and [wj |= ψ]ω = > for all 0 ≤ j ≤ i

⊥ otherwise

Fig. 1 Standard LTL semantics over infinite traces.

We can then define the standard semantics of LTL formulas via the
interpretation function [ |= ]ω : Σω ×LTL→ B2, as shown in Figure 1 [6].
We call w ∈ Σω a model of ϕ iff [w |= ϕ]ω = > and also say that w satisfies
ϕ, or that ϕ holds for w. For each LTL formula the set of all its models is an
ω-regular language that is accepted by a corresponding Büchi automaton
[44,45].

We interpret a possibly multi-threaded C program P as a Kripke struc-
ture whose state transitions are derived from the possibly interleaved ex-
ecution sequence of C statements and whose valuations are given by the
possible values of the program’s global variables; in the current configu-
ration we consider interleavings only at statement boundaries and assume
sequential consistency [32], but options to ESBMC allow us also to use a
finer-grained analysis. P can be non-deterministic, so the transition relation
can branch even for single-threaded programs. As C’s semantics gives a de-
fined (zero) value to all global variables not initialised explicitly at their
declaration, all valuations are completely defined in each possible world,
including the initial world. This also gives us a well-defined interpretation
of the next operator: Xϕ holds for P if ϕ holds after the next update of
a global variable used in the LTL C-expressions. In many situations this
interpretation of X is not directly useful in assessing program correctness;
it is often appropriate to write X-free stutter-invariant formulas, following
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P1:

int s=0;

while(true){

s=1-s;

};

P2:

int s=0;

while(true){

s=1;

s=0;

};

P3:

int s=0;

s=1;

while(true){

s=0;

s=1;

};

Fig. 2 Programs with identical infinite traces but different behaviour on finite
unwindings for γ ≡ G({s=0} → F{s=1}).

Lamport [33]. We identify a C program P with the set of all traces T (P )
that correspond to this Kripke structure, and say that an LTL formula ϕ
holds for P if ϕ holds for all w ∈ T (P ).

Note that we use a linear-time rather than a branching-time approach
and thus there are no explicit path quantifications (i.e., CTL∗-style opera-
tors A and E). There is, however, an implicit universal quantification over
all possible interleavings and program executions.

3.2 LTL over Finite Traces

The standard LTL semantics is defined over infinite traces, but as we are us-
ing a bounded model checker to analyse the program, we explore only finite
traces. Like other bounded model checkers [11], ESBMC bounds the pro-
gram executions by limiting the number of times a loop is unrolled, rather
than limiting the length of traces.2 This guarantees that loop invariants are
respected over the traces. If the program contains at most one potentially
unbounded loop then the finite traces explored by ESBMC are proper pre-
fixes of the potentially infinite traces of the original program. If the program
contains several potentially unbounded loops then we can still analyse it,
using the --partial-loops option. In this case, however, the observed fi-
nite traces are not necessarily proper prefixes of the original program traces,
and our approach can produce false results, as the symbolic execution can
continue past unsatisfied loop termination conditions.

We use the notation P|k to denote the k-fold loop unwinding of the pro-
gram P . Consider for example the three programs shown in Figure 2 and
the request-response formula γ ≡ G({s==0} → F{s==1}). Since all three
programs alternate infinitely often between s==0 and s==1, the single in-
finite trace produced by each program satisfies γ under the standard LTL
semantics. The situation, however, looks different for the traces produced
by finite unwindings (with increasing loop bounds) of the program loops,
as the loop structure of the program determines the lengths of the finite

2 Unstructured goto C code is also handled; every execution of a backward jump
counts as a “loop iteration” associated with that goto.
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prefixes which are considered. P1 ends with s==1 (i.e., responds to the re-
quest) if we unwind the loop an odd number of times, and with s==0 (i.e.,
a pending request) otherwise, P2 always ends with s==0, while P3 always
ends with s==1. P3 is thus intuitively better behaved than both P2 (which
is consistently wrong) and P1 (which behaves erratically). The standard
(infinite trace) LTL semantics does not distinguish between the programs.

There is a fundamental problem with applying LTL to finite traces. It
is caused by extending the standard interpretation of X as a strong (or
existential) next operator [29] to finite traces, which requires the existence
of a next state to hold. This is counter-intuitive for finite traces, since X true
is now no longer a tautology, as |=F (i.e., the standard interpretation applied
to finite traces) gives us for all formulas ϕ, [u |= Xϕ]F = ⊥ if u1 = ε [6].

Several approaches tweak the syntax or semantics of LTL to remedy this
situation. Since G and F can be defined relatively straightforwardly on finite
traces, Giannakopolou and Havelund [21] suggested removing X and work
with an X-free subset of LTL. The syntax can instead be extended by adding
an additional weak (or universal) next operator X [35], which complements
the strong next and holds if there is no next state: [u |= Xϕ]F = > if u1 = ε.
Hence, X true is a tautology. This also gives unwinding laws for F and G,
namely Fϕ ≡ ϕ ∨ XFϕ and Gϕ ≡ ϕ ∧ XGϕ. Alternatively, the distinction
between strong and weak next can be encoded into the semantics rather
than the syntax, via two different semantic functions which coincide on the
temporal and most Boolean operators, but differ on negation (which flips
between both functions) and the atomic propositions, where they reflect
the behaviours of strong and weak next, respectively [19]. Finally, the finite
traces can be systematically extended, e.g., by infinite stuttering of their last
state [33], to allow the use of standard semantics, i.e., defining [u |= ϕ]∞ =
[uuωn−1 |= ϕ]ω for a finite trace u of length n. This is also called the infinite
extension semantics [4], and we say that a BA corresponding to ϕ stutter-
accepts u if [u |= ϕ]∞ = >.

Under the infinite extension semantics, γ (see Figure 2 again) now holds
for all unwindings of P3, but not for the unwindings of P2 or P1. However,
in a two valued logic, we cannot distinguish between a formula that (truly)
holds because we have seen a good prefix [30] and so all possible contin-
uations of the observed finite trace will be models as well, and one that
(presumably) holds because we have not yet seen a bad prefix (i.e., a finite
trace that cannot be prefix of a model) or because it holds if we stutter
the final state infinitely often. In order to realize this distinction, we use
a larger truth domain. Bauer et al. [5–7] have proposed and analysed two
different domains, B3 = {⊥, ?,>}, with ⊥ v ? v >, ⊥ = >, and ? = ?, and
B4 = {⊥,⊥p,>p,>}, with ⊥ v ⊥p v >p v >, ⊥ = >, and ⊥p = >p. Under
|=3, finite traces are mapped to > (resp. ⊥) iff they are good (resp. bad)
prefixes; all other finite traces are considered “ugly” and are mapped to the
inconclusive truth value ? [5,7]. In B4, ? is refined into the two truth values
⊥p (“presumably false”) and >p (“presumably true”). The interpretation
function |=4 then uses the finite trace semantics with weak next to distin-
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guish between the two cases (i.e., [u |= ϕ]4 = ⊥p iff u is an ugly prefix and
[u |= ϕ]F = ⊥, and similarly for >p) [6].

Our analysis here is based on B4 as well, but we use a different inter-
pretation function from Bauer et al. [6]. In particular, we use the infinite
extension semantics to resolve ugly prefixes into presumably good or pre-
sumably bad. The advantage of this approach is that we do not need to
resort to the weak-next operator and can define the finite trace semantics
in terms of the standard semantics only. The use of stutter extension in this
way is naturally compatible with the stutter-invariant semantics introduced
by Lamport [33] for computer programs but does not require it.

Definition 2 The bounded trace semantics of LTL formulas is given by

[u |= ϕ]B =


> iff ∀w ∈ Σω · [uw |= ϕ]ω = >
>p iff [uuωn−1 |= ϕ]ω = > ∧ ∃w ∈ Σω · [uw |= ϕ]ω = ⊥
⊥p iff [uuωn−1 |= ϕ]ω = ⊥ ∧ ∃w ∈ Σω · [uw |= ϕ]ω = >
⊥ iff ∀w ∈ Σω · [uw |= ϕ]ω = ⊥

for a finite trace u ∈ Σ∗ of length n > 0 and an LTL formula ϕ.

In our case, all program traces are guaranteed to be non-empty, because
all global variables have defined initial values, which then form the initial
state. We extend the interpretation to sets of traces by taking the meet over
all elements, i.e., [U |= ϕ]B =

d
u∈U [u |= ϕ]B . We say that ϕ holds (resp.

presumably holds) for a C program P if [T (P ) |= ϕ]B = > (resp. >p). We
finally say ϕ holds (resp. presumably holds) if [Σω |= ϕ]B = > (resp. >p)
and define the notion of failing resp. presumably failing correspondingly.

The bounded trace semantics is an extension of our earlier work [37]
where we only used the infinite stutter semantics. Consequently, we were
effectively working only with the inconclusive truth values ⊥p and >p, while
we add the definitive truth values ⊥ and > here.

3.3 LTL Model Checking vs. LTL Runtime Verification

Finite LTL semantics similar to the bounded trace semantics we are using
here have been developed largely for run-time monitoring and verification
purposes [34], and due to the focus on finite traces, our approach has some
similarities with run-time verification, but one key difference remains. Run-
time verification only considers actually observed behaviours, one at a time,
while we analyse all possible behaviours at the same time. This difference be-
comes prominent with non-determinism, even for single-threaded programs.
Consider for example the program Q

int p=0, q=0; p=1; if(*){p=0}; if(*){q=1};

where “*”denotes a non-deterministic choice and p and q are zero-initialised
global variables. Q can produce four finite traces, depending on the partic-
ular non-deterministic choices:
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(i) [{p==0}∧{q==0}, {p==1}∧{q==0}],
(ii) [{p==0}∧{q==0}, {p==1}∧{q==0}, {p==1}∧{q==1}],
(iii) [{p==0}∧{q==0}, {p==1}∧{q==0}, {p==0}∧{q==0}], and
(iv) [{p==0}∧{q==0}, {p==1}∧{q==0}, {p==0}∧{q==0}, {p==0}∧{q==1}].

Now consider the LTL formula ψ ≡ X({p==1}U {q==1}). Clearly, ψ does
not hold for the traces (iii) and (iv), and over these, |=3, |=4, and |=B all
map ψ to ⊥. However, in run-time verification, there is no guarantee that
we ever observe these traces, so the assurance we gain from its results is
limited. Our approach, however, will work out that [T (Q) |= ψ]B = ⊥ and
hence Q can fail ψ. Moreover, if we consider Q′ to be the variant of Q where
q is initialised with one, we find [T (Q′) |= ψ]B = > as well. Finally, if we
change Q to Q′′

int p=0, q=0; p=1; if(*){q=1};

then (iii) and (iv) become impossible, and our approach will calculate
[T (Q′′) |= ψ]B = ⊥p, meaning that no finite trace produced by Q′′ is a
definitive counter-example but, on stuttering, ψ does not hold for all traces.

4 Characterizing Program Behaviours Using B4

Definition 2 characterises the truth value in B4 of an LTL formula ϕ with
respect to a single finite trace u. In this section we now show how we can
use the Büchi automaton for the never claim to effectively calculate the
truth value of the formula with respect to the finite traces of a program
P . In Section 4.1, we briefly recall the basic notions of Büchi automata. In
Section 4.2 we characterise the relationship between truth values in B4 and
validity of never claims over B2, while we describe the high-level structure
of our algorithm in Section 4.3.

4.1 Büchi Automata

Büchi automata (BA) are finite-state automata over infinite words first
described by Büchi [8]. We follow Holzmann’s presentation [24] and define
a BA as a tuple B = (S, s0, L, T, F ) where S is a finite set of states, s0 ∈ S
the initial state of the BA, L a finite set of labels, T : S × L → 2S a state
transition function and F ⊆ S a set of accepting states. A run is a sequence
of state transitions taken by B as it operates over some input. A run is
accepted ifB can pass through an accepting state s ∈ F infinitely often along
the run. B may be deterministic or non-deterministic but in the following,
we will consider only non-deterministic BAs, since deterministic BAs need
a more complicated acceptance condition in order to model LTL. A BA is
in reduced form [1] if it has no rejecting traps, i.e., if the BA has a possible
next state, then there is some extension of the trace that is accepted.
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init !{pressed}||{charge > min}  

T0_2

true  {charge > min}  

true  

init true  

2

!{charge > min}&&{pressed}  

!{charge > min}  

Fig. 3 The left BA accepts the example from the introduction,
G({pressed} → F{charge > min}). The right BA is its negation, used for
the never claim in our monitor.

A number of algorithms exist for converting an LTL formula to a BA
accepting a program trace [20,22,42]. We use the ltl2ba [20] algorithm and
tool. Figure 3 illustrates the BA produced from the example LTL formula in
the introduction. Its labels (i.e., input symbols) are propositions composed
from the primitive C-expressions used in the LTL formula.

4.2 Truth Values in B4 and Standard Validity of Never Claims

As noted above, Definition 2 characterises the truth value in B4 of an LTL
formula ϕ with respect to a single finite trace u. However, for model checking
ϕ over a program P this is not yet suitable. First, we need to express the
truth value in B4 in terms of the validity of the never claim under the two-
valued standard semantics. This allows us to use the BA for the never claim
directly, and avoids the need to define an explicit acceptance criterion for
the four-valued logics. The following lemma addresses this problem. Note
that we do not need a complete characterisation of all truth values in B4.

Lemma 1

(i) [u |= ϕ]B = > iff @w ∈ Σω · [uw |= ¬ϕ]ω = >

(ii) [u |= ϕ]B w >p iff [uuωn−1 |= ¬ϕ]ω = ⊥

(iii) [u |= ϕ]B = ⊥ iff ∀w ∈ Σω · [uw |= ¬ϕ]ω = >

Proof (i) Since the standard semantics |=ω (cf. Figure 1) is defined over B2,
@w ∈ Σω · [uw |= ¬ϕ]ω = > is equivalent to ∀w ∈ Σω · [uw |= ¬ϕ]ω = ⊥,
and thus to ∀w ∈ Σω · [uw |= ϕ]ω = >, which gives us the claim.
(ii) Similarly, [uuωn−1 |= ¬ϕ]ω = ⊥ is equivalent to [uuωn−1 |= ϕ]ω = >,
which holds if and only if [u |= ϕ]B = > or [u |= ϕ]B = >p.
(iii) This follows directly from the definitions of |=ω and |=B .
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Second, the program P may be non-deterministic and produce more than
one trace. We thus need to consider the minimum truth value attained over
all of its possible traces T (P ). The following lemma addresses this problem.

Lemma 2

(i) [U |= ϕ]B = > iff @u ∈ U,w ∈ Σω · [uw |= ¬ϕ]ω = >

(ii) [U |= ϕ]B w >p iff @u ∈ U · [uuωn−1 |= ¬ϕ]ω = >

(iii) [U |= ϕ]B = ⊥ iff ∃u ∈ U · ∀w ∈ Σω · [uw |= ¬ϕ]ω = >

Proof Recall that
d
u∈U [u |= ϕ]B = [U |= ϕ]B . Then:

(i) By Lemma 1 @u ∈ U,w ∈ Σω · [uw |= ¬ϕ]ω = > is equivalent to
∀u ∈ U · [u |= ϕ]B = >; hence, [U |= ϕ]B = >.
(ii) By definition of |=ω, @u ∈ U · [uuωn−1 |= ¬ϕ]ω = > is equivalent to
∀u ∈ U · [uuωn−1 |= ϕ]ω = >, which by defnition of |=B means that ∀u ∈
U · [u |= ϕ]B w >p, and thus [U |= ϕ]B w >p.
(iii) By the definitions of |=ω and |=B we have that ∃u ∈ U · ∀w ∈
Σω · [uw |= ¬ϕ]ω = > is equivalent to ∃u ∈ U · [u |= ϕ]B = ⊥ and thus
[U |= ϕ]B = ⊥ as well.

4.3 Algorithm Structure

Lemma 2 rephrases the definition of validity in B4 into a form that is suitable
for model checking a program against a standard non-deterministic never
claim BA. In particular, in all but the inner clause of the test for ⊥ the
quantifiers are existential and are thus compatible with the existential (i.e.,
optimistic) search for accepting traces.

In the following we use BA¬ϕ to denote the never claim BA for the LTL
formula ϕ. Moreover, we assume that all the accepting traps have been
replaced with a single accepting state with a transition on true to itself and
that BA¬ϕ is in reduced form [2]. These assumptions make the application
of the tests below straightforward.

[T (P ) |= ϕ]B = >: As BA¬ϕ is in reduced form, it cannot accept the pro-
gram trace any longer if it has no transition to a next state, and the
trace can be pruned. If and only if all traces are pruned, the program
evaluates to >. Note that this cannot happen [2] if ϕ is a (non-trivial)
classical safety property [1].

[T (P ) |= ϕ]B = ⊥: If BA¬ϕ reaches an accepting trap for any trace, ϕ eval-
uates to ⊥ over the program, with the trace returned as a witness. Note
that this cannot happen [2] if ϕ is a classical liveness property [1].

[T (P ) |= ϕ]B = >p: If the property does not evaluate to > or ⊥, we check
its stutter acceptance. A simple reachability analysis of BA¬ϕ, given the
transitions enabled in the final program state, allows us to check for
possible stutter acceptance at the end of each symbolically generated
set of traces. If no accepting cycle is found, the property evaluates to
>p, with one of the traces returned as a witness.
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[T (P ) |= ϕ]B = ⊥p: If BA¬ϕ stutter accepts for at least one trace, the prop-
erty evaluates to ⊥p and the trace is returned as witness.

Note that the different cases are not independent of each other, due to
the inequality in Lemma 2 (ii). As we are looking for a witness to the worst
bounded behaviour that the program can exhibit when we model check, the
actual implementation of the algorithm (cf. Section 6) needs to check the
cases in a specific order.

4.4 Example

As an example, consider the BA on the right of Figure 3, i.e., the never
claim BA for G({pressed} → F{charge > min}). This BA is generated
by ltl2ba and is already optimised, and in particular in reduced form.
Hence, it can accept on some infinite suffix from any state, and the set of
optimistically accepting states is {init, 2}. There is no explicit trap state and
thus, as this is an optimised BA, the set of states which will accept for all
infinite suffixes is empty. The interesting behaviour of this request-response
liveness condition is, as explained further in Section 5.3, restricted to its
behaviour on infinite stutter. There are four possible infinite stutter suffixes
and their accepting sets are shown in Table 1. Hence, if {charge > min}
and {pressed} are both false in the final program state, the BA stutter
accepts only if it is in state 2, and thus the trace is presumably failing only
then.

Final symbol Stutter-accepting states

¬{charge > min} ∧ ¬{pressed} {2}
¬{charge > min} ∧ {pressed} {init, 2}
{charge > min} ∧ ¬{pressed} ∅
{charge > min} ∧ {pressed} ∅

Table 1 Final symbol valuations and their corresponding stutter-accepting
states.

5 Checking Safety, Co-Safety, and Liveness Properties

5.1 Safety Properties

In an imperative language such as C, it is common to test the validity of
safety or invariant properties at various points in the program execution via
assert-statements. These may be checked during program execution using
the standard C library and, in conjunction with a suitable test suite, allow
checking a variety of runs of the code as noted in Section 3.3. They are
also recognised and checked during symbolic execution by ESBMC which
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const int count =6;

int i=count;

int j=0;

...

while(i) {

i--;

j++;

assert(i+j==count );

}

const int count =6;

int i=count;

int j=0;

int looking =1;

/* visibility to monitor */

...

while(i) {

looking =0;

i--;

j++;

looking =1;

}

Fig. 4 C program with a safety assertion (left) and a monitor variable for a
guarded safety property (right).

gives an exhaustive examination of their validity for all (bounded) execu-
tion traces. Thus the code fragment on the left of Figure 4 will be verified
successfully as the loop invariant i+j==count holds whenever the assert-
statement is executed. It is, however, often more convenient to assert a safety
property everywhere except within a specific region in which updates are
taking place, rather than just at particular locations. This is particularly at-
tractive in languages such as C with limited support for data encapsulation:
data that would be considered a private instance field in an object-oriented
language is modifiable in C by a library’s clients.

The classical safety property Gϕ states that ϕ must hold throughout
program execution. However, this is of little practical use as it stands, be-
cause ϕ will typically be violated by any changes to its individual variables.
Instead we model the permitted region in which the individual variables
can be updated using a global flag looking which we set to zero during an
update, and use a guarded safety property G({looking} → {i+j==count}).
The listing on the right of Figure 4 shows the modified fragment together
with the auxiliary code. In this case, the symbolic execution runs to com-
pletion and ESBMC returns >p.

Since it is in principle always possible for a safety property to be violated
at some future time, no finite execution will cause the never claim BA to
reject a word outright. In our approach, a terminated program generates an
infinite trace by stuttering indefinitely on its last symbol; in other words,
the global variables cease changing. Thus stutter rejection of the never claim
(i.e., >p) constitutes correctness for any terminating program. It is precisely
our knowledge that the program has terminated (i.e., that the ESBMC run
has completed without violating any unwind assertions) that confirms the
program correct against the specification.

We can instead modify our LTL specification to capture explicitly the
termination of the program; this is a natural use for the U operator. We
simply add a second auxiliary variable done to capture program termination;
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this is initialised to zero, and set to one right before the program finishes.
We then use the LTL specification ({looking} → {i+j==count})U{done}.
In this case, ESBMC reports a successful verification (i.e., >) because the
never claim BA fails; the invariant holds until done becomes true.

Note that, while accurately expressing a safety property over a termi-
nating program, the second LTL expression does not meet the classical
definition of a safety property [1] as finite prefixes can guarantee rejection
of the never claim.

5.2 Co-Safety Properties

Co-safety properties [7] often reflect convergence or termination conditions.
They are the converse of safety properties; they can be demonstrated to be
true by some finite trace. Technically, they are a subset of liveness properties
[1] as, whatever the initial trace, there is some future extension that can
satisfy them. A co-safety property can never evaluate to ⊥ in B4.

If we work again from the example shown in Figure 4, then the LTL
formula F{j==6} expresses the termination (co-safety) condition that j will
eventually reach its final value. When the program runs to completion,
the condition is satisfied and ESBMC reports successful verification (i.e.,
returns >). If we artificially restrict the number of loop interactions by
setting the ESBMC flag --unwindset 1:4 to restrict the program loop
to four iterations, ESBMC reports “presumably bad” (i.e., returns ⊥p).
This is typical of a co-safety property; a gradually extended partial trace
will continuously report “presumably bad” (as the necessary event has not
happened) until it reports successful verification.

5.3 True Liveness Properties

Safety and co-safety properties have natural definitions over both finite and
infinite traces, i.e., for terminating and for non-terminating programs. In
contrast, true liveness properties3 are generally regarded as well-defined
only over infinite words. It is thus a challenge to use a bounded model
checker to explore the true liveness properties of a program.

One of the simplest true liveness properties is a request-response formula
of the form G(ϕ→ Fψ). The program is always required to respond to the
request ϕ by producing a response ψ. We may examine this behaviour with
the simple program

unsigned int i=0; int main() { while (1) i++; };

and the property G({i%2==0} → F{i%3==0}). This property has the typical
feature of a true liveness property: no finite trace can determine acceptance

3 The classical definition of liveness properties [1] includes co-safety properties
as well. Here we use the term true liveness property to exclude co-safety properties.
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or rejection. A simple static analysis which searches for rejecting and ac-
cepting traps in the never claim BA already shows that this formula will
(regardless of the program) never result in a definitive outcome (i.e., ⊥ or
>).

In general, the regular appearance of “presumably true” as we extend
the length of the investigated prefix trace is characteristic of good programs
under a request-response liveness property, while bad programs may never
result in “presumably true”. For this program, as we progressively increase
the unwind bound from 1 to 12, the program’s behaviour oscillates between
“presumably true” (i.e., >p) and “presumably bad” (i.e., ⊥p), and ESBMC
reports:

>p,⊥p,>p,⊥p,⊥p,>p,>p,⊥p,>p,⊥p,⊥p,>p

In this particular case, we have bounded the only program loop in such a
way that our trace extends by one symbol with each increase in the bound.
More general programs can be more difficult to examine; if, for example, we
have to bound several loops, the finite traces we observe may not even be
valid prefixes of the real program behaviour. Nevertheless, in well-designed
programs loop iterations should independently meet request-response live-
ness conditions and, as we increase the unwind bounds on the various loops
we would expect to see regular appearances of >p.

A variant of the request-response liveness formula is often used as a
fairness formula. The formula GF{p} expresses that the C expression p is
true infinitely often at all times in the future. Such conditions can, for
example, be conjoined into expressions of the form (

∧
i GF ρi)→ G(ϕ→ Fψ)

which are easily handled by our tools. Note that such expressions were the
original motivation for the development of the compact BAs produced by
ltl2ba [20].

Some liveness properties are resistant to an analysis with finite traces.
“Toggle” properties such as G((ϕ → F¬ϕ) ∧ (¬ϕ → Fϕ)) can be seen from
our static analysis to have no stutter-accepting prefixes. The static analysis
of the never claim BA for this formula shows that it responds with ⊥p to
all (non-empty) finite traces. Unfortunately, our tools are of little further
use in this case, other than to confirm the impossibility of the task set in
front of them. Thus, checking the formula

G(({i%2} → F¬{i%2}) ∧ (¬{i%2} → F{i%2}))

over the above program, as we progressively unwind we see

⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p, . . .

Overall, our simple reachability analysis of the never claim BA generated
from the LTL formula allows us to determine, for any LTL expression, which
of the four elements of B4 can be returned, allowing us to estimate infinite or
long-time program behaviours from the data returned by ESBMC. We are,
therefore, able to distinguish safety, co-safety, “true” liveness and “toggle”
liveness properties and thus to guide the expectations of the ESBMC user.
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5.4 Restricted Alphabets

Some symbols of the alphabet Σ = 2Prop cannot arise during program
execution; this can happen if the various propositions are not independent.
As an obvious example, consider a formula which includes both {p} and {!p}
as primitive C expressions rather than negating in the LTL using {p} and
¬{p}. This causes no problems with the evolution of the BA during program
execution, nor with the computation of stutter-acceptance or rejection for
⊥p or >p. Our system will, however, explore too large a symbol space when
analysing for acceptance over all, or over no, future continuations. We might,
in such situations, report ⊥p where a more sensitive analysis would report
⊥. ESBMC can itself be used, if necessary, to confirm the independence of
the C expressions.

6 Implementation

6.1 Monitor Threads for Bounded Trace Semantics

In our context, a monitor is some portion of code that inspects the program
state and verifies that it satisfies a given property, causing an assertion to
fail if this is not the case. A monitor thread is a monitor that is interleaved
with the execution of the program under analysis. This allows the monitor to
verify that the property holds at each particular interleaving of the program,
detecting any transient violations between program interleavings.

Monitor threads have been employed in SPIN to verify LTL properties
against the execution of a program [24]. A non-deterministic BA represent-
ing the negation of the LTL property is implemented in a Promela process
which will accept a program trace that violates the original LTL property.
SPIN then generates execution traces of interleavings of the program being
verified, and for each step in each trace runs the Promela BA. This is called
a synchronous interleaving.

In this work we employ a similar mechanism to verify LTL properties
by interleaving the program under verification with a monitor thread.

6.2 Checking LTL Properties Against a C Program

We apply the approach described above to a C code base by implementing
the BA in C, which is then executed as a monitor thread, interleaved with
the execution of the program. This approach involves two technical dimen-
sions: the conversion of the BA to C, and the interaction of the monitor
thread with the program under analysis.
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6.2.1 Implementing Büchi automata in C. To implement our BA and mon-
itor thread, we take the ltl2ba tool and convert its usual Promela automa-
ton output to C. This output is combined with the output of the reachability
analysis information as described in Section 4.3 to produce assertions about
the automaton state and program state at the end of the execution. The
model checker itself only recognises successful or failed verifications of a
program, so we report the discovery of a good prefix (i.e., >) as a successful
verification, and all other trace classifications as assertion failures with the
assertion message identifying which type of trace has been found.

Listing 1 in Appendix A shows the C implementation of a monitor, with
the never claim BA in Figure 3 (see page 11) contained in the function
ltl2ba fsm (lines 9 to 39).

ESBMC’s symbolic execution of the original program then drives the
evolution of BA¬ϕ through the possible states. However, since the code for
BA¬ϕ is not actually, but only symbolically executed, we do not model
the non-determinism of the BA directly in the C code (e.g., by keeping a
set of current states), and can instead represent the current states of the
BA as a non-deterministic but properly constrained single integer variable.
That is, the C code will transition only from one state to another, not
from one subset of states to another. We then rely on the model checker to
explore all possible transitions. This makes good use of capabilities of the
SMT solver and substantially simplifies the implementation of the monitor.
In particular, there is no need to convert the BA into deterministic form,
which can lead to an explosion in the number of BA states.

An infinite loop (lines 11–38) encapsulates the state transition code. To
model non-deterministic transitions from any particular state, we take a
non-deterministic value (line 12) and then attempt all transitions (lines 16
and 19), depending on the non-deterministic value. This allows the model
checker to explore all transitions available. Each transition is guarded by an
assume-statement, which ensures that a transition is only permitted when
the current state of program under analysis satisfies the transition’s guard.

The test harness generated by our tool calls ltl2ba_start_monitor

(lines 40–48) when modelling begins and ltl2ba_finish_monitor (lines
67–84) when modelling ends in order to identify the start and end of the
analysis. Given that we operate in the context of bounded model checking
program termination is guaranteed, as any infinite loop is unrolled only
to the length of the bound and thread deadlocks which might otherwise
prevent termination are separately detected by ESBMC [15].

Once the program terminates, ltl2ba_finish_monitor inspects the
current automaton state and program state, and determines from the pre-
computed reachability analysis of the automaton the truth of the particular
lattice value being assessed. This precomputed data is held in the arrays
ltl2ba stutter accept table, ltl2ba good prefix excluded states,

and ltl2ba bad prefix states. These indicate whether the current sym-
bol and state stutter-accept (>p), prohibit a >-trace, or indicate a ⊥-trace,
respectively. Multiple runs of ESBMC can be required to determine the
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bounded trace interpretation of this (potentially non-deterministic) inter-
leaving as we search for the smallest truth value for which there is a coun-
terexample.

6.2.2 Interacting with the Existing Code Base. LTL formulas allow veri-
fication engineers to describe program behaviour using propositions about
program states. To describe the state of a C program, we support the use of
C expressions as propositions within LTL formulas. Any characters in the
formula enclosed in curly brackets are interpreted as a C expression and as
a single proposition within LTL. The expression itself may use any global
variables that exist within the program under analysis as well as constants
and side-effect free operators. The expression must also evaluate to a value
that can be interpreted as a truth value under conventional C semantics.

For example, the following liveness property verifies that a certain input
condition results in a timer eventually increasing:

G(({press == 4} ∧ {mstate == 1})→ F{stime > refstime})

and the following safety property checks a buffer bound condition:

G({buffer size != 0} → {next < buffer size})

Within the BA (see Listing 1 again) these expressions are required for
use in the guards that prevent invalid transitions being explored. We avoid
using the expressions directly in the BA; instead ESBMC searches the pro-
gram under verification for assignments to global variables used in the C
expression, then inserts code to update a Boolean variable corresponding
to the truth of the expression (lines 2 and 4) immediately after the symbol
is assigned to. In case multiple propositions update on the same variable,
re-evaluations are executed atomically. All modifications are performed on
ESBMC’s internal representation of the program and do not alter the code
base.

However, this transformation does not handle indirect assignments to
variables, i.e., assignments through dereferencing pointers. Neither of our
case studies perform such actions—in fact our application domain (embed-
ded software) tends not to feature indirect operations at all, instead pre-
ferring to operate on a fixed set of configuration and data variables, due to
memory and environment limitations. As a result we have not attempted
to extend our approach to handle indirection. If required, it could be im-
plemented by taking all indirect assignments, comparing the pointer being
dereferenced to the addresses of variables appearing in the C expression,
and updating the relevant Boolean variables if the comparison is true.

6.2.3 Synchronous Interleaving. In our previous work [37] we composed
the monitor thread with the program under analysis in the same manner as
we would any other thread, with the scheduler giving no special treatment
to the monitor. This approach had the benefit of requiring few modifications
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to the model checker, but at the expense of performance, with many thread
interleavings produced by the scheduler being discarded as they provided
the monitor with an inconsistent view of the program state. In turn, this
effect resulted in long verification times, even on small programs with no
intrinsic use of threads.

We have therefore changed our approach to perform a deterministic and
directed interleaving of the monitor with the program under analysis. Code
inserted after global variable updates now calls a model checker intrinsic
that causes it to context switch to the monitor thread, then context switch
back once the monitor has run the BA a single step; the monitor itself no
longer behaves as a schedulable thread. This technique effectively inlines the
running of the BA at every point of interest. It also ensures that verification
of single-threaded programs does not suffer from a multi-threaded state
explosion.

7 Case Studies

We have tested the approach described in this paper against a set of be-
havioural properties of a pulse oximeter firmware and a bicycle monitoring
computer. The first application is an embedded firmware that we treat as
single-threaded, whereas the second application is a multi-threaded model
of a data collection computer for cyclists. All tests were run on an other-
wise idle Linux workstation4 using ESBMC version 1.205 and Microsoft Z3
version 2.19, with a time limit of one hour to execute.

7.1 Pulse Oximeter

The pulse oximeter is a medical device responsible for measuring oxygen
saturation (SpO2) and heart rate (HR) in the blood system using a non-
invasive method [14]. The firmware of the pulse oximeter is composed of
device drivers (i.e., display, keyboard, serial, sensor, and timer), a system
log component that allows the developer to debug the code through data
stored in RAM, and an API that enables the application layer to call the
services provided by the platform. The final version of the pulse oximeter
firmware has approximately 3500 lines of C code and 80 functions.

Here we report the results of verifying the pulse oximeter code against
six properties selected from a previous SMV model of the software [16], as
shown in Table 2. Note that all six properties hold for the code.

The first four properties are liveness properties of the general form
G(ϕ → Fψ), so that whenever an enabling condition ϕ has become true,
then eventually the property ψ is required to become true as well. The
up btn formula checks that when the up button is pressed (press == 4)

4 2.67Ghz Intel Xeon, 12Gb of memory, running Fedora 16
5 Available from www.esbmc.org
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Name Property

baud conf G({brate == 1200} → F{TH1 == 0xE8})
keyb start G({the key == 1} → F{command == 1})
serial rx G(({p inDat == 1} ∨ {flag2 == 1})→ F{flag1 == 1})
up btn G(({press == 4} ∧ {mstate == 1})→ F{stime > refstime})
start btn G((¬{press == 1} ∧ F{press == 1})→ F{q startCall})
buflim G({buffer size != 0} → {next < buffer size})

Table 2 Properties for verification of pulse oximeter firmware.

and the device is in a particular state (mstate == 1), then eventually an
internal counter stime becomes larger than its previous value (kept in the
variable refstime inside the test harness). The formula start btn checks
intuitively that whenever there is a transition of press to one from any
other value then q startCall will also become true now or in the future.
Note however that we are not checking for a strict correspondence beetween
changes in press and the occurences of q startCall becoming true so that
for example the former can happen several times before the latter happens.
Finally buflim is a safety property that ensures a ring-buffer output index
does not exceed the allowed limits. This check is similar to buffer overflow
checks already supported by ESBMC.

We formulated a test harness for each portion of the firmware being
tested to simulate the activity that the LTL property checks. We then in-
voked ESBMC with different loop unwind bounds. We also ran these tests
against versions of the firmware deliberately altered to not match the LTL
formula to verify that failing execution traces are identified.

The results are summarised in Table 3. Here, the loc column contains
the line count of the source file for the portion of firmware being tested
and k the loop unwinding bound specified for the test. The columns t and
Result record the elapsed time in seconds that the test took to run and the
outcome ESBMC reported for the test. A result of “TO” indicates the test
did not complete in the allowed time, and “MO” indicates that ESBMC
exhausted the available memory.

We first observe that ESBMC determines the expected result for most
test cases. Since the first five properties are liveness properties, ESBMC
reports the inconclusive results >p and ⊥p instead of the definitive versions.
We also observe that the amount of time taken scales roughly linearly with
the unwind bound given in most tests. A notable exception is the buflim
test, which increases dramatically in time and memory requirements. This
performance hit is caused by a large amount of program non-determinism
in the portion of code being LTL checked, making checking higher unwind
bounds unfeasible.

Finally, we observe that the up btn property has incorrect results for
a number of cases. Here, the seeded error combines a number of (in this
case, three) consecutive keypresses into one keypress event. This violates
the property that the internal counter stime always increases after the
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original modified

Property loc k t (sec.) Result t (sec.) Result

baud conf 178

1 1 >p 1 ⊥p

4 1 >p 1 ⊥p

10 1 >p 1 ⊥p

20 2 >p 2 ⊥p

keyb start 50

1 1 >p 1 ⊥p

4 2 >p 2 ⊥p

10 5 >p 4 ⊥p

20 17 >p 15 ⊥p

serial rx 584

1 1 >p 1 ⊥p

4 2 >p 2 ⊥p

10 7 >p 5 ⊥p

20 23 >p 25 ⊥p

up btn 856

1 1 >p 1 >p

4 1 >p 1 >p

10 2 >p 2 >p

20 3 >p 3 ⊥p

start btn 856

1 1 >p 1 ⊥p

4 1 >p 1 ⊥p

10 2 >p 2 ⊥p

20 3 >p 2 ⊥p

buflim 145

1 1 >p 1 ⊥
4 934 >p 4 ⊥

10 MO MO MO MO
20 MO MO MO MO

Table 3 Results of testing LTL properties against pulse oximeter firmware.

enabling key press event. However, as every third keypress does result in a
keypress event, the unwind bounds of 1, 4 and 10 terminate with the most
recent keypress having caused a keypress event, thus terminating in a >p
state. This is an example of a property that oscillates between ⊥p and >p
as the unwind bounds are changed, as discussed in Section 5.3.

7.2 Bicycle computer

The bicycle computer case study comprises a small C-model of a device
designed to gather and display speed and distance information about a
cyclist’s journey. This case study contains approximately 150 lines of code.
The program is multi-threaded and treats user input, display, and data
collection as separate processes. We test a number of (valid) properties over
the global state of the program, listed in Table 4.

Because this program is multi-threaded, checking it using ESBMC re-
sults in a large number of distinct runs of ESBMC’s SMT solver, each
corresponding to different thread interleavings. These have to be combined
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Name Property

dist ovfl G({cycle distance m >= 0})
tot dist ovfl G({total cycle distance m >= 0})
dist rel G({cycle distance m <= total cycle distance m})
state range G({cur state >= 0} ∧ {cur state <= 3})

Table 4 Bicycle computer properties.

k = 1 k = 2

Property C Time (s) Result Time (s) Result

dist ovfl
1 1 >p 1 >p

2 7 >p 34 >p

3 56 >p 379 >p

tot dist ovfl
1 1 >p 1 >p

2 5 >p 24 >p

3 63 >p 368 >p

dist rel
1 1 >p 2 >p

2 7 >p 32 >p

3 59 >p 542 >p

state range
1 1 >p 2 >p

2 7 >p 42 >p

3 62 >p 478 >p

Table 5 Results of testing LTL properties against bicycle model.

together to report the worst (in the four-valued lattice) behaviour of any
interleaving.

We test the program against the properties with a number of different
unwind bounds k and context switch bounds C. Our results (cf. Table 5)
show the correct output is determined for each run, for a variety of loop
unwind bounds and context switch bounds. We note that verification time
increases exponentially with increases in the context bound, which is as
expected in multi-threaded verification.

The bicycle computer examples above are all safety properties. Veri-
fication of liveness properties in multi-threaded code presents additional
difficulties for our approach and is currently practical only for small exam-
ples. Multi-threaded safety failures are typically shallow, requiring only few
interleaves. In contrast, even liveness properties guaranteed by loop invari-
ants require that relatively large interleave bounds be set to ensure that all
threads run complete loop iterations. More general liveness properties can
depend on scheduling between threads. The default pthreads behaviour pro-
vides weak fairness and is accurately modelled by ESBMC. Liveness prop-
erties which depend on this weak fairness will, however, inevitably show
violations for finite traces.
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8 Related Work

Related work in the area of finite LTL semantics has already been discussed
in Section 3. We will not discuss general approaches to LTL symbolic model
checking (see Rozier [41] for an overview) or to software model checking
(see Visser et al. [46] for an overview) here, but focus on approaches that
specifically model check software against LTL properties.

SPIN [23] is a well known software model checker that operates on con-
current program models written in the Promela modelling language. SPIN
operates with explicit state and uses state hashing to reduce the quantity
of state space it explores. SPIN also allows users to specify an LTL formula
to verify against the execution of a model by using BA in a similar man-
ner to our work. While SPIN is well established as a model checker, the
requirement to re-model codebases in Promela can be time consuming.

Java PathFinder is a Java Virtual Machine (JVM) that performs model
checking on Java bytecode. It also operates with explicit state and uses state
matching to reduce the search space, but can also operate symbolically for
the purpose of test generation and coverage testing. Verification of LTL
formulae can be achieved with the JPF-LTL [38] extension which uses BA
and method invocation monitoring to inspect the execution of the model.

Staats and Heimdahl [43] take Simulink models and verify that a proto-
type Simulink-to-C translator produces code that satisfies the same prop-
erties as the Simulink model. A set of predetermined safety properties de-
scribed in LTL are verified first against the Simulink model, then against
the emitted C code. A C monitor is devised, and a feature of the converted
model is used to select code locations where the monitor must be inserted.
Their approach is not designed to support the checking of liveness or co-
safety properties.

Leucker and Schallhart [34] review the field of run-time verification and
cover its differences from model checking, as well as various LTL-like logics
for analysing finite prefixes of traces. More expressive ways of describing
system properties are explored, as well as the potential for run-time analysis
beyond verification.

9 Conclusions and Future Work

Context-bounded model checking has already been used successfully to ver-
ify multi-threaded applications written in low-level languages such as C.
However, the approach has largely been confined to the verification of safety
properties. In this paper, we have extended the approach to the verification
of liveness properties given as LTL formulas against an unmodified code
base. We follow the usual approach of composing the BA for the never
claim with the program, but work at the actual code level. We thus convert
the BA further into a separate C monitor thread and check all interleavings
between this monitor and the program using ESBMC. We use a four-valued
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LTL semantics to handle the finite traces that bounded model checking
explores.

Our results so far are encouraging, and we were able to verify a number
of liveness properties on the firmware of a medical device; in future work, we
plan to extend the evaluation to a larger code base and wider variety of prop-
erties. There are still considerable opportunities to improve performance and
to execute on more capable computer platforms. For multi-threaded sim-
ulations, the state hashing reported in our SEFM 2011 contribution [37]
has proved to be very useful, cutting verification times by about 50% on
average. We expect that an improved hashing implementation, for example
removing serialisation, will improve these results further.

We are also keen to embrace the new C language standard’s [27] thread-
ing support and weak memory model; this should allow us to substantially
increase performance by reducing the number of safe interleavings.

Acknowledgement. This work was supported by a Royal Society Interna-
tional Exchange Grant. The reviewers’ comments helped us to improve our
presentation.

A Sample monitor

Listing 1 C implemention of the Büchi automaton for the formula
¬G({pressed} → F{charge > min}).

1 char __ESBMC_property___cexpr_0 [] = "pressed";

2 _Bool __cexpr_0_status;

3 char __ESBMC_property___cexpr_1 [] = "charge > min";

4 _Bool __cexpr_1_status;

5
6 typedef enum {_ltl2ba_state_0 ,_ltl2ba_state_1} _ltl2ba_state;

7 _ltl2ba_state _ltl2ba_statevar =_ltl2ba_state_0;

8
9 void *ltl2ba_fsm(void *d) {

10 unsigned int choice;

11 while (1) {

12 choice = nondet_uint ();

13 __ESBMC_atomic_begin ();

14 switch(_ltl2ba_statevar) {

15 case _ltl2ba_state_0:

16 if (choice == 0) {

17 __ESBMC_assume (1);

18 _ltl2ba_statevar = _ltl2ba_state_0;

19 } else if (choice == 1) {

20 __ESBMC_assume (! _ltl2ba_cexpr_1_status &&

21 _ltl2ba_cexpr_0_status );

22 _ltl2ba_statevar = _ltl2ba_state_1;

23 } else {

24 __ESBMC_assume (0);
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25 }

26 break;

27 case _ltl2ba_state_1:

28 if (choice == 0) {

29 __ESBMC_assume (! _ltl2ba_cexpr_1_status );

30 _ltl2ba_statevar = _ltl2ba_state_1;

31 } else {

32 __ESBMC_assume (0);

33 }

34 break;

35 }

36 __ESBMC_atomic_end ();

37 __ESBMC_switch_from_monitor ();

38 }

39 }

40
41 void ltl2ba_start_monitor(void) {

42 pthread_t t;

43 __ESBMC_atomic_begin ();

44 pthread_create (&t, NULL , ltl2ba_fsm , NULL);

45 __ESBMC_register_monitor(t);

46 __ESBMC_atomic_end ();

47 __ESBMC_switch_to_monitor ();

48 }

49
50 _Bool _ltl2ba_stutter_accept_table [4][2] = {

51 {false ,true}, {false ,false}, {true ,true}, {false ,true}

52 };

53
54 _Bool _ltl2ba_good_prefix_excluded_states [2] =

55 { true , true };

56
57 _Bool _ltl2ba_bad_prefix_states [2] =

58 { false , false };

59
60 unsigned int _ltl2ba_sym_to_idx(void) {

61 unsigned int idx = 0;

62 idx |= (_ltl2ba_cexpr_1_status) ? 1 : 0;

63 idx |= (_ltl2ba_cexpr_0_status) ? 2 : 0;

64 return idx;

65 }

66
67 void ltl2ba_finish_monitor(void) {

68 __ESBMC_kill_monitor ();

69
70 _Bool in_bad_state =

71 _ltl2ba_bad_prefix_states[_ltl2ba_statevar ];

72 __ESBMC_assert (! in_bad_state ,"LTL_BAD");

73
74 unsigned int cursym = _ltl2ba_sym_to_idx ();
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75 _Bool in_accept_state =

76 _ltl2ba_stutter_accept_table[cursym ][ _ltl2ba_statevar ];

77 __ESBMC_assert (! in_accept_state ,"LTL_FAILING");

78
79 _Bool not_in_good_prefix =

80 _ltl2ba_good_prefix_excluded_states[_ltl2ba_statevar ];

81 __ESBMC_assert (! not_in_good_prefix ,"LTL_SUCCEEDING");

82
83 return;

84 }
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