
Noname manuscript No.
(will be inserted by the editor)

Applying Symbolic Bounded Model Checking to the
2012 RERS Greybox Challenge
Jeremy Morse1, Lucas Cordeiro2, Denis Nicole3, Bernd Fischerj

1Department of Computer Science, University of Bristol, UK
jeremy.morse@bristol.ac.uk
2Electronic and Information Research Center, Federal University of Amazonas, Brazil
lucascordeiro@ufam.edu.br
3Electronics and Computer Science, University of Southampton, UK
dan@ecs.soton.ac.uk
jDivision of Computer Science, Stellenbosch University, South Africa
bfischer@cs.sun.ac.za

The date of receipt and acceptance will be inserted by the editor

Abstract We describe the application of ESBMC, a symbolic bounded model
checker for C programs, to the 2012 RERS Greybox Challenge. We checked the
reachability properties via reachability of the error labels, and the behavioral prop-
erties via a bounded LTL model checking approach. Our approach could solve
about 700 properties for the small and medium problems from the offline phase,
and scored overall about 5000 marks but still ranked last in the competition.

1 Introduction

Model checking has been used successfully to verify abstract system designs as
well as actual software; applying it to the RERS Greybox Challenge is thus an
obvious idea. Model checking comes in a variety of different techniques, but we
use symbolic bounded software model checking, as implemented by our ESBMC
model checker [7,8]. That is,

– we analyze the challenge programs directly (specifically, the C versions), not
an abstract model that has been extracted separately;

– we (arbitrarily) bound the number of iterations of the main loop that we analyze
and unroll the program accordingly;

– we generate a number of verification conditions (VCs) from the unrolled pro-
gram, which we pass to a Satisfiability Modulo Theories (SMT) solver, instead
of explicitly exploring the reachable state space of the original program.

We use this approach both for the reachability properties (in the usual way via
checking the reachability of the error labels) and the behavioral properties (via

2 Jeremy Morse, Lucas Cordeiro, Denis Nicole, Bernd Fischer

our bounded LTL model checking approach [15,16]). However, it seems to be
clear that symbolic bounded software model checking is not the optimal technique
for the Challenge: the programs implement finite state machines with a relatively
small state space, but bounding and unrolling under-approximates the reachable
state space while at the same time the structure of the VCs over-approximates
it. Similarly, the programs are much simpler than those typically encountered in
software model checking (e.g., the offline problems only use integer equality and
contain no other operations or data structures) while at the same time the large
programs (approximately 70,000 to 180,000 lines of code) are too large to unroll
them sufficiently often.

We only participated in the offline phase of the Challenge, and only attempted
the small and medium problems (i.e., Problem1 to Problem6). As expected,
we did thus not score well, and came last in the competition, with a total score
of 5061 marks. However, our main motivation for participating in the Challenge
was to evaluate our bounded LTL model checking approach over a large, external
benchmark set. Here, we fared well on the four problems we attempted: we cor-
rectly analyzed 385 out of the 400 properties, and scored close to 3000 marks on
these properties alone.

The remainder of this paper is organized as follows. In the next section we
briefly describe the applied tools and the challenge problems. In Sections 3 and 4
we give details of our approach to solving the reachability problems and the be-
havioral problems, respectively. The complete results are given in the appendix.

2 Experimental Set-Up

2.1 ESBMC

ESBMC is a context-bounded symbolic model checker that allows the verification
of single- and multi-threaded C code with shared variables and locks. ESBMC
supports full ANSI-C (as defined in ISO/IEC 9899:1990), and can verify programs
that make use of bit-level operations, arrays, pointers, structs, unions, memory al-
location and floating-point arithmetic. It can reason about arithmetic under- and
overflows, pointer safety, memory leaks, array bounds violations, atomicity and
order violations, local and global deadlocks, data races, and user-specified asser-
tions, although none of ESBMC’s built-in checks are useful for the Challenge.

As a bounded model checker ESBMC checks (the negation of) a given prop-
erty at a given depth: given a program, a property ϕ, and a bound k, BMC unrolls
the program k times and translates it into a VC ψ such that ψ is satisfiable if and
only if ϕ has a counterexample of length less than or equal to k. ESBMC uses a
modified CBMC [5] frontend to unroll the program, to convert it into static sin-
gle assignment (SSA) form, and to generate the VC(s), but it uses different back-
ground theories and passes them to an SMT solver, rather than a pure satisfiability
(SAT) solver. ESBMC natively supports Z3 [10] and Boolector [4] but can also
output the VCs using the SMTLib format. However, due to the simple structure
of the challenge programs (see Section 2.3) the use of SMT solvers is of little ad-

Title Suppressed Due to Excessive Length 3

vantage over plain propositional satisfiability solvers. For the Challenge we used
ESBMC 1.21.1, which is available from www.esbmc.org.

2.2 Bounded LTL model checking

We have also extended (see [16] for details) context-bounded model checking
to validate multithreaded C programs directly against linear-time temporal logic
(LTL) formulae over expressions in the global variables of the C program under
test. The key problem here is that a bounded model checker only explores finite
prefixes of any possibly infinite traces produced by the program, while the LTL
standard semantics is defined over infinite traces. We cannot simply cut the traces
because the standard interpretation of the next-operator X requires the existence of
a next state to hold. One possible approach is to systematically extend the finite
traces, e.g., by infinite stuttering of their last state [14]. However, in a two-state
logic, we cannot then distinguish between a formula that (truly) holds because we
have seen a good prefix [13] and so all possible infinite continuations of the ob-
served finite trace will be models as well, and one that (presumably) holds because
we have merely not seen a bad prefix (i.e., a finite trace that cannot be prefix of a
model) because we stutter the final state infinitely often. In order to achieve this
distinction, we need to use a larger truth domain. Our extension is based on a four-
valued domain which uses two additional truth values to interpret inconclusive
(i.e., neither good nor bad) prefixes [3].

Formally, we consider the set of atomic propositions Prop over the global
variables of the C program and define Σ = 2Prop . We use u ∈ Σ∗ to denote
finite traces, w ∈ Σω to denote infinite traces, and aω ∈ Σ to denote the infinite
trace consisting of the letter a ∈ Σ only. We can define the standard semantics
of LTL [17] formulas via an interpretation function [|=]ω : Σω × LTL → B2,
where B2 = {⊥,>} is the standard truth domain. We call w ∈ Σω a model of
ϕ iff [w |= ϕ]ω = > and also say that w satisfies ϕ, or that ϕ holds for w. Finite
traces can be extended systematically by infinite stuttering of their last state [14] to
extend the standard semantics to finite traces, i.e., [u |= ϕ]∞ = [uuωn−1 |= ϕ]ω for
a finite trace u of length n. However, this so-called the infinite extension semantics
[2] cannot handle inconclusive prefixes properly, as sketched above. In order to
achieve this, we introduce the larger truth domain B4 = {⊥,⊥p,>p,>}, with
⊥ v ⊥p v >p v > [3], and then use the infinite extension semantics to resolve
the inconclusive prefixes into presumably good (i.e., >p) or presumably bad (i.e.,
⊥p). This bounded trace semantics is thus given by

[u |= ϕ]B =


> iff ∀w ∈ Σω · [uw |= ϕ]ω = >
>p iff [uuωn−1 |= ϕ]ω = > ∧ ∃w ∈ Σω · [uw |= ϕ]ω = ⊥
⊥p iff [uuωn−1 |= ϕ]ω = ⊥ ∧ ∃w ∈ Σω · [uw |= ϕ]ω = >
⊥ iff ∀w ∈ Σω · [uw |= ϕ]ω = ⊥

for a finite trace u ∈ Σ∗ of length n > 0 and an LTL formula ϕ. In our case, all
traces T (P) of a program P are guaranteed to be non-empty, because all global

4 Jeremy Morse, Lucas Cordeiro, Denis Nicole, Bernd Fischer

variables have defined initial values, which then form the initial state. We ex-
tend the interpretation to sets of traces by taking the meet over all elements, i.e.,
[U |= ϕ]B =

d
u∈U [u |= ϕ]B and say that ϕ holds (resp. presumably holds) for

a C program P if [T (P) |= ϕ]B = > (resp. >p). Finally, we call P good (resp.
succeeding, failing, or bad) wrt. ϕ if [T (P) |= ϕ]B = > (resp. >p, ⊥p, or ⊥).

The usual approach [6,12] to check LTL formulas converts their negation (the
so-called never claim) into a non-deterministic Büchi automaton (BA), which is
composed with the program; if the composed system admits an accepting run,
the program violates the specified requirement. However, in order to implement
the bounded trace semantics, we need to modify the approach. We thus first pre-
compute a complete static analysis to determine which states are accepting under
the different infinite extensions of the observed finite traces. This is feasible due to
the relatively small size of the BAs produced by the ltl2ba [11] algorithm and
tool1 (which we modified to produce C code). We then check the combined system
several times, with different assertions corresponding to the different acceptance
criteria, based on different infinite extensions of the observed traces, to derive the
correct truth value for the LTL. For each of these assertions our model-checker
searches for a witness which violates the assertion; our program’s overall “cor-
rectness” value is the weakest such value in B4 for which a witness can be found
that violates the corresponding assertion.

2.3 Challenge problems

The challenge problems are all so-called event-condition-action systems, which
are finite state transducers where the states are not given explicitly, but only im-
plicitly by the possible valuations of a number of state variables. The implemen-
tations consist of a main loop, which in each iteration reads an input (i.e., event)
from the standard input, updates the state variables, and possibly writes an output
(i.e., action) to the standard output; the latter two are guarded by conditionals over
the input, and over the values of the state variables.

The challenge problems all work with relatively small alphabets, and use five
or (in most cases) six different input symbols, and between three and nine dif-
ferent output symbols. Easy and moderate problems have between four and eight
state variables, while large problems have 30. The offline problems (Problem1
to Problem9) have a much simpler structure than either the validation or the
online problems. The programs for the offline problems only assign between two
and five different integer constants to the state variables, and only use the equal-
ity and propositional operators in the guards. In contrast, the remaining programs
(Problem10 to Problem19) use arithmetic operators to update the state vari-
ables (but from their old values only, i.e., the new value does not depend on any of
the other variables), and use the other operators in the guards.

The classification of the problems as easy, moderate, or hard remains opaque
to us, although all three hard problems have substantially more state variables.
However, from a bounded model checking point of view the primary issue is the

1 with further improvements by Babiak et al. [1]

Title Suppressed Due to Excessive Length 5

length of the shortest counterexample traces for the reachability properties, as this
determines the necessary unwinding bounds.2 In this view, at least some of the
offline problems seem to be mis-classified. For the simple problems all reach-
able error labels require three to seven loop iterations, but the (supposedly) easy
medium problem (Problem4) requires 17 to 21 loop iterations, while the moder-
ate (Problem5) and hard (Problem6) versions require only eight and six itera-
tions, respectively.

We only participated in the offline phase of the Challenge, and only attempted
the small and medium problems (i.e., Problem1 to Problem6); the large prob-
lems (Problem7 to Problem9) are too large and broke our frontend. For the
behavioral properties we only attempted Problem1 to Problem4. We ran ES-
BMC on the C versions of the Challenge programs; the only modifications were
to replace the input (scanf) by an appropriately constrained non-deterministic
choice, and to prune (by means of an assumption on the computed output) execu-
tions that use invalid inputs.

2.4 Execution of Experiments

We ran all experiments on the Southampton IRIDIS compute cluster,which com-
prises about 1000 nodes, each with 12 2.4Ghz Intel Westmere cores and 22Gb of
memory, running Red Hat Enterprise Linux Server release 5.3 (Tikanga). We sub-
mitted batches of 60 jobs, which where scheduled by IRIDIS’ own job scheduling
system. We set no time or memory limits for the jobs corresponding to the reach-
ability properties, and a time limit of one hour (but no memory limit) for the jobs
corresponding to the behavioral properties.

3 Checking the reachability properties

3.1 Approach

The very simple structure of the programs (i.e., no arithmetic, array, or memory
operations) means that we only need to check the reachability of the explicit error
labels to solve the reachability problems. Since ESBMC supports error labels, this
is straightforward; for each label lab, we called ESBMC as follows (with unwind
bound n dependant on the problem category):

esbmc --no-assertions --no-unwinding-assertions

--unwind n --error-label lab problem.c

We ran ESBMC for each label separately, although this requires repeated unrolling
and conversion of the same program; we suspect that we could improve our overall
performance substantially if we checked for all labels in one batch (e.g., using Z3’s
context stack mechanism). Table 1 summarizes the results.

2 Note that the internal program structure still plays a role: for the same unwinding bound
the hard problems take one to two orders of magnitude longer than the easy or moderate
ones; see Table 1 for details.

6 Jeremy Morse, Lucas Cordeiro, Denis Nicole, Bernd Fischer

3.2 Small problems

The relatively small size of these programs (approximately 600 to 1600 lines of
code) allowed us to unroll them quite aggressively. We iteratively deepened the
unrolling bound until the results stabilized at n = 7 and then used a larger bound
to double-check the results. For the easy and moderate programs (Problem1 and
Problem2) we were able to run ESBMC with n = 50, but the hard program
(Problem3) produced larger and harder VCs requiring substantially longer SMT
solver times, so we only used n = 20 here.

For the labels identified as reachable, ESBMC produces a counterexample
trace, as usual in bounded model checking, from which a test input could be ex-
tracted; due to the simple structure of the challenge programs, we did not execute
these inputs, but simply assumed them to be true counterexamples. We associated
the maximum weighting of 9 marks with each of these labels.

For the other labels we interpreted the failure to reach this label within the
given bound as sufficient evidence that it is indeed unreachable. We also used this
strategy successfully in the TACAS software verification competition [9]. How-
ever, strictly speaking we should not make an equally strong claim, despite the
large bounds we were able to explore (representing at least a 3-fold increase over
the size of the counterexamples found with smaller bounds). We therefore “wa-
gered” only a weighting of 6 marks for each of these lables. In the end, this turned
out to be too cautious, since all of our results here where correct, and we achieved
408, 390, and 408 out of 549 possible marks for the three problems, respectively.

3.3 Medium problems

The substantially larger size of these programs (approximately 4800 to 9500 lines
of code) means that we could unroll them only to much smaller bounds. We were
able to analyze the easy problem (Problem4) at a bound of n = 20 and the mod-
erate and hard problems at n = 7 before the calculations became intractable. How-
ever, for the moderate problem (Problem5) we were unable to find any reach-
able error labels for this bound. This is in marked contrast to the hard problem
(Problem6), where we found 26 reachable error labels. We discounted the mod-
erate results as an anomaly, because we were unable to resolve this situation during
the Challenge, and submitted solutions only for the easy and hard problems (i.e.,
Problem4 and Problem6). After the results were released, we realized that all
reachable labels in Problem5 require counterexample traces with at least eight
inputs, which is just outside our chosen unwinding bound.

We used the same marking scheme as for the small problems; in particular, we
kept a weighting of 6 marks for the problems where we did not find a counterexam-
ple within the bounds. This time our caution proved slightly more justified, as one
of the labels (error12) of Problem4 is reachable with 21 inputs, just outside
chosen unwinding bound of n = 20. However, this was the only wrong result we
produced, and we achieved 420 and 444 out of 549 possible marks, respectively.

Title Suppressed Due to Excessive Length 7

3.4 Abstraction into Boolean programs

By default, ESBMC uses Z3, a satisfiabilty solver modulo theories, as backend
engine. Z3 supports a wide variety of different theories, including uninterpreted
functions, arrays, and linear integer arithmetics, which are very useful for general
software verification. However, the offline challenge programs are very simple,
and require none of these operations. In particular, all int-typed state variables
are only assigned a small number of of different integer values, and the only opera-
tions on them are assignment and equality comparison, both with constant integer
operands. We thus experimented with a Boolean abstraction, in which the state
variables were replaced by the appropriate number of Booleans. However, this
turned out to be counter-productive: the larger number of assignments led to larger
VCs and longer solver times. We suspect that Z3’s built-in bit-blasting implements
the same approach more efficiently.

4 Checking the behavioral properties

4.1 Approach

The challenge rules allow different approaches to handle the behavioral properties,
but we interpret and verify them as LTL formulae over the program’s variables.
We thus first converted the given formulae into our LTL notation, replacing the
propositional shorthand notation by explicit comparisons involving input and
output (e.g., iB becomes input==2), and eliminating the WU operator along
the way. We then converted these formulae further into C monitor code and model-
checked the combined system (i.e., original program and monitor). An early ver-
sion [15] of our system ran the program and monitor as concurrent threads, but we
now have an optimized scheduling scheme for this case. This scheduler only trig-
gers a step of the BA monitor when any of the variables used in the LTL formula
are assigned a value.

Originally, we checked only for the validity of the behavioral properties en-
coded in the LTL formulae and ignored the reachability properties; more specifi-
cally, we ignored the assert(0)-statements at the error labels. This means that
we allowed the underlying finite state machine to ignore the invalid input that led
to the invalid state, so that it could even transition out of it again (more precisely,
resume from the last valid state). However, when we tested this approach against
the evaluation examples (specifically Problem10), it became clear that a dif-
ferent way of interpreting the interaction between the error labels and the LTL
formulae was assumed, that of pruning away such behaviors. We thus replaced the
assert(0)-statements at the error labels by assume(0)-statements.

4.2 Interpretation of results

It is rarely possible to verify an LTL property by only exploring finite traces. A
simple co-safety property such as Fp might be verifiable, but only if every execu-
tion of the program sets p to true within the unwinding bound. A safety property

8 Jeremy Morse, Lucas Cordeiro, Denis Nicole, Bernd Fischer

such as Gp cannot be verified using finite traces, but a witness may be found to its
failure. A liveness property such as (p → F¬p) ∧ (¬p → Fp) cannot be shown
to be true or false using finite traces although, for this expression, evidence of
toggling of p might be reassuring.

Our approach computes its outcome by determining the worst (i.e., closest in
the domain B4 to satisfying the never claim) behavior of any explored finite trace
of the program. The four cases correspond to traces as follows:

– P is bad wrt. ϕ: At least one trace guarantees the satisfaction of the never
claim, i.e. the BA is able to visit an accepting state infinitely often regardless
of the future behavior of the program. The extracted BMC counterexample is
a true counterexample of the safety property.

– P is failing wrt. ϕ: At least one trace will satisfy the never claim if the program
stutters, i.e., continues infinitely without changing any observed state.

– P is succeeding wrt.ϕ: For at least one trace, there exists some future evolution
of the BA’s observable state in which the never claim is satisfied, but no such
evolution is stuttering.

– P is good wrt. ϕ: For no trace can the never claim be satisfied by any future
extension. Typically, every trace has resulted in the (non-deterministic) BA
reaching a set of states, where no state has a successor. The extracted BMC
counterexample is a true witness of the co-safety property.

Note that the two definitive cases (i.e., bad and good) are “sticky” in the sense
that increasing the unwind bound for the underlying C program cannot change the
outcome.

As demonstrated in the example below, not all LTL formulae are able to exhibit
all these behaviors, regardless of the program to which they are coupled. Our static
analysis of the BA allows us to catalogue the available behaviors for each LTL
expression.

4.3 An example

We take as an example the LTL formula for the first behavioral property for the
small/easy case, i.e., the output U occurs before output Z:

(! oZ WU (oU & ! oZ))

After translation into our input format, the never claim becomes

!(({output != 26} U ({output == 21} && {output != 26}))
|| (G {output != 26}))

We can see that our direct translation of the LTL has the potential to investigate un-
reachable states; the program state {output == 21} && !{output != 26}
is potentially explored by the BA although it is clearly unreachable by the C pro-
gram. In this particular case, however, the automaton as shown in Fig. 1 does
not have explicit transitions on such unreachable states. If there were transitions
enabled only on unreachable states, they would introduce additional possible be-
haviors of the BA. These would never be explored by ESBMC as the monitor BA

Title Suppressed Due to Excessive Length 9

init !{output == 21}

all

!{output != 26}

true

Fig. 1 The BA generated for the never claim of the property output U occurs before output
Z.

is coupled to the C program. They would, however, show up in the “optimistic”
analysis of the possible future behaviors of the BA after the unwound bound limit
is reached. This in turn could lead to excessively cautious conclusions about the
program’s correctness wrt. to the LTL formulae. Program runs may be labelled
succeeding when a more carefully constructed BA would show them as good. We
could have used auxiliary C variables to ensure that no such redundant transitions
were generated but, in order to avoid extensive rewriting of the programs, we have
taken the naı̈ve approach.

This particular LTL formula does not fall into any of the three simple types of
property, safety, co-safety, or liveness. A finite prefix3 can be good (e.g. 〈oV, oV, oU〉,
where the BA fails) or bad (e.g. 〈oV, oV, oZ〉, where the BA is guaranteed to be able
to remain in an accepting loop). It can also be succeeding (e.g. 〈oV, oV, oV, oV〉,
where both success and failure remain possible but an infinite stutter extension
would be good). This particular BA cannot, however, show failing behavior.

We are thus able to use an automatic analysis of the available behaviors of the
BA to guide our confidence in the finite-trace results obtained from coupling the
BA to the C program using ESBMC.

4.4 Analysis results

We were only able to achieve useful unwind bounds on the three small problems
and the medium/easy problem (i.e., Problem1 to Problem4). Table 2 sum-
marizes the resuls. For all small problems, all outcomes are the same for unwind
bounds 9–14. We thus have reasonable confidence in our results for the small prob-
lems.

For the medium/easy problem there are a few properties (#0, #14, #17, #77,
#98) where the outcome changes with increasing unwind bounds. However, in all
cases the change is from failing to good, corresponding to finally reaching the
co-safety witness with the next iteration of the program’s loop.

Overall, the number of definitive (i.e., good and bad) and inconclusive (i.e.,
succeeding and failing) outcomes are roughly equally common. However, we find
substantially more counterexamples (200) than witnesses (12).

3 Since this specific LTL formula only uses output the traces (and thus prefixes) consist
of output-literals only. However, the corresponding input values can still be extracted
from the BMC counterexamples.

10 Jeremy Morse, Lucas Cordeiro, Denis Nicole, Bernd Fischer

We used program (Problem10.c) to validate our analysis results. For the
100 given LTL properties, our approach produced, with the scheme outlined above,
only two false results (for #13 and #30). In both cases, we claim that the formula is
succeeding, while the validation suite claims an explicit counterexample. However,
in both cases the counterexample involves invalid inputs, which we have explicitly
ruled out.

We thus submitted every good (bad) case as a success (failure) with a weighting
of 9, since we get explicit witnesses (counterexamples). The succeeding and failing
cases are more problematic; based on the results we achieved over the validation
suite, we have chosen to report them, even for the medium/easy code, as success
and failure with weightings of 7 and 9 respectively.

4.5 Discussion

For the 400 properties we analyzed we returned 385 (96.3%) correct results, which
gives us, with the weights as explained above, a total score of 2991 marks. This
compares well to the results achieved by the teams from Twente (3492 marks,
99.0% correct) and Paris (3069 marks, 98.1% correct).

The 15 wrong results fall into two different categories. In five cases, we find
that the program is failing (resp. succeeding) wrt. the property, but the failure (resp.
success) result that we report is wrong, because our unwind bounds are too small.
In the remaining cases we find that the program is bad wrt. the property, but the
counterexample trace goes through an error state; this trace should eventually be
pruned away (using an assume(0)-statement) at an error label, but the automa-
ton accepts a number of additional inputs sufficient to push this error label over
the unwinding bound.

5 Conclusions

Clearly, if symbolic bounded model checking is a hammer it is doubtful whether
the Challenge problems are the right nails. For the reachability problems, ESBMC
is orders of magnitude slower than Java Pathfinder, an explicit-state model checker
for Java [18], and we failed to process the large problems. However, we expect that
our relative performance would improve with larger sets of inputs and outputs. On
the other hand, we are encouraged that ESBMC, a general-purpose multi-threaded
C model checker, has been able to generate useful analyses of these large and
somewhat unusual systems. For the reachability properties we only produced one
wrong result, despite the fact that we are using a bounded analysis. For the be-
havioral properties, we produced 15 wrong results and achieved a success rate of
96.3%, which is relatively close to the winner’s success rate of 99.0%. We believe
that our software model checking approach will become more competitive as the
programs become more complicated (e.g., use of larger alphabets, arithmetic op-
erations in the state updates, or data structures), and plan to participate in future
Challenges with such problems.

Title Suppressed Due to Excessive Length 11

Acknowledgements. The authors acknowledge the use of the IRIDIS High Per-
formance Computing Facility, and associated support services at the University of
Southampton, in the completion of this work.

References

1. T. Babiak, M. Kr̆etı́nsý, V. Rehák, and J. Strejc̆ek. LTL to Büchi Automata Translation:
Fast and More Deterministic. TACAS, LNCS 7241, pp. 95–109, 2012.

2. A. Bauer and P. Haslum. LTL goal specifications revisited. ECAI’10, Frontiers in
Artificial Intelligence and Applications, vol. 215, pp. 881–886, 2010.

3. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime veri-
fication. J. Log. Comput., 20(3):651–674, 2010.

4. R. Brummayer and A. Biere, Boolector: An efficient SMT solver for bit-vectors and
arrays, TACAS, LNCS 5505, pp. 174–177, 2009.

5. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. TACAS,
LNCS 2988, pp. 168–176, 2004.

6. E. Clarke, F. Lerda. Model Checking: Software and Beyond. J. Universal Computer
Science, 13:639–649, 2007.

7. L. Cordeiro and B. Fischer. Verifying Multi-threaded Software using SMT-based
Context-Bounded Model Checking. ICSE, pp. 331–340, ACM, 2011.

8. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-Based Bounded Model Checking
for Embedded ANSI-C Software. IEEE Trans. Software Eng., 38(4):957–974, 2012.

9. L. Cordeiro, J. Morse, D. Nicole, and B. Fischer. Context-Bounded Model Checking
with ESBMC 1.17 TACAS, LNCS 7214, pp. 533–536, 2012.

10. L. M. de Moura and N. Bjørner, Z3: An efficient SMT solver, TACAS, LNCS 4963, pp.
337–340, 2008

11. P. Gastin and D. Oddoux Fast LTL to Büchi Automata Translation. CAV, LNCS 2102,
pp. 53–65, 2001.

12. G. Holzmann. The SPIN Model Checker - Primer and Reference Manual. Addison-
Wesley, 2004.

13. O. Kupferman and M. Vardi. Model checking of safety properties. Formal Methods in
System Design, 19(3):291–314, 2001.

14. L. Lamport. What Good is Temporal Logic? Information Processing, 83:657–668,
1983.

15. J. Morse, L. Cordeiro, D. Nicole, and B. Fischer. Context-Bounded Model Checking
of LTL Properties for ANSI-C Software. SEFM, LNCS 7041, pp. 302–317, 2011.

16. J. Morse, L. Cordeiro, D. Nicole, and B. Fischer. Model Checking LTL Properties over
ANSI-C Programs with Bounded Traces. J. Software and Systems Modeling. Online
first, July 2013.

17. Pnueli, A.: The temporal logic of programs. FOCS, pp. 46–57, 1977.
18. J. Visser. Personal communication.

A Detailed Results

12 Jeremy Morse, Lucas Cordeiro, Denis Nicole, Bernd Fischer

Program1 Program2 Program3 Program4 Program6
n = 7 n = 50 n = 7 n = 50 n = 7 n = 20 n = 20 n = 7

|VC| 8284 59239 8216 59343 47815 136852 286837 324421
Label w Time t Time t w Time t Time t w Time t Time t w Time t w Time t
global − 9 2.4 2 220.5 3− 9 2.4 6 229.7 5− 9 45.5 4 773 4− 9 5105 5− 9 4102 6
error0 + 6 0.8 - 256.0 - + 6 14.2 - 0.7 - + 6 270.5 - 1373 - + 6 11598 -− 9 4668 7
error1 + 6 0.8 - 279.0 - + 6 0.7 - 223.4 - + 6 16.9 - 1752 - + 6 8039 -− 9 4918 6
error2 + 6 0.8 - 291.8 - + 6 0.7 - 224.0 - + 6 6.7 - 359 - + 6 6839 -− 9 4785 7
error3 + 6 0.8 - 281.8 - + 6 0.7 - 220.9 - + 6 17.7 - 2588 - + 6 5120 - + 6 1026 -
error4 + 6 0.7 - 170.3 - + 6 0.7 - 215.6 - + 6 16.4 - 1821 -− 9 19375 18− 9 4685 6
error5 + 6 0.6 - 292.1 - + 6 0.8 - 197.0 - + 6 8.1 - 907 - + 6 6524 -− 9 4664 6
error6 + 6 0.7 - 369.7 - + 6 1.0 - 526.5 - + 6 5.9 - 478 -− 9 16984 19 + 6 1592 -
error7 + 6 0.7 - 338.9 - + 6 0.8 - 228.1 - + 6 15.7 - 2278 - + 6 2903 - + 6 860 -
error8 + 6 0.7 - 303.3 - + 6 0.7 - 250.4 - + 6 6.1 - 332 - + 6 6778 - + 6 880 -
error9 + 6 0.7 - 220.5 - + 6 0.7 - 229.5 -− 9 60.8 6 949 6− 9 12809 17− 9 5046 6
error10 + 6 0.7 - 281.2 - + 6 0.6 - 198.0 - + 6 5.7 - 254 - + 6 4768 -− 9 4084 6
error11 + 6 0.7 - 336.3 - + 6 0.7 - 190.0 - + 6 11.7 - 1982 -− 9 17920 18− 9 4467 6
error12 + 6 0.7 - 360.3 - + 6 0.7 - 154.0 - + 6 14.5 - 2081 - + 6 10706 -− 9 4420 6
error13 + 6 0.6 - 240.0 -− 9 2.4 4 223.0 3− 9 49.6 5 900 5− 9 15734 17 + 6 1271 -
error14 + 6 0.7 - 329.2 - + 6 0.7 - 364.8 - + 6 8.2 - 198 -− 9 14698 17 + 6 1021 -
error15 − 9 2.7 5 223.1 5 + 6 0.6 - 202.5 - + 6 17.4 - 2451 -− 9 14747 17− 9 4453 6
error16 + 6 0.7 - 377.6 -− 9 2.4 5 214.7 8 + 6 10.6 - 600 - + 6 8277 - + 6 942 -
error17 + 6 0.7 - 278.6 - + 6 0.7 - 134.9 - + 6 8.8 - 1366 -− 9 13803 17 + 6 919 -
error18 + 6 0.7 - 220.2 - + 6 0.7 - 236.1 - + 6 8.2 - 548 -− 9 17097 17 + 6 1175 -
error19 + 6 0.6 - 236.0 - + 6 0.7 - 124.3 - + 6 15.0 - 2426 -− 9 17687 20 + 6 1183 -
error20 − 9 2.6 7 254.9 14 + 6 0.7 - 177.1 - + 6 10.2 - 1181 - + 6 8114 -− 9 4272 6
error21 − 9 2.8 5 248.1 5 + 6 0.7 - 151.1 - + 6 13.2 - 1854 - + 6 11178 -− 9 4023 6
error22 + 6 0.7 - 563.8 - + 6 0.8 - 226.3 - + 6 7.6 - 775 - + 6 3689 - + 6 990 -
error23 + 6 1.0 - 271.0 - + 6 0.8 - 222.9 - + 6 19.0 - 2732 - + 6 1788 - + 6 1162 -
error24 + 6 0.9 - 197.6 - + 6 0.7 - 194.6 - + 6 5.8 - 246 - + 6 4610 -− 9 4474 6
error25 + 6 0.9 - 158.8 - + 6 0.7 - 234.4 - + 6 9.1 - 782 - + 6 7123 - + 6 927 -
error26 + 6 0.9 - 245.9 - + 6 0.7 - 159.8 -− 9 46.9 4 849 4− 9 14603 18 + 6 1133 -
error27 + 6 0.8 - 291.8 - + 6 0.7 - 144.2 -− 9 50.5 5 893 5− 9 15280 17− 9 3853 7
error28 + 6 0.8 - 263.0 - + 6 0.8 - 212.6 -− 9 50.7 5 930 5 + 6 6154 - + 6 998 -
error29 + 6 0.7 - 247.6 - + 6 0.7 - 108.2 - + 6 7.7 - 273 - + 6 6181 -− 9 4700 6
error30 + 6 0.7 - 215.6 - + 6 0.7 - 144.3 - + 6 7.1 - 348 - + 6 3350 - + 6 1298 -
error31 + 6 0.8 - 230.7 - + 6 0.7 - 129.5 -− 9 47.5 5 962 5− 9 16239 19 + 6 1346 -
error32 − 9 2.6 7 236.1 10 + 6 0.8 - 107.0 - + 6 6.0 - 241 -− 9 14997 17 + 6 1133 -
error33 − 9 2.5 6 235.4 9 + 6 0.7 - 155.4 - + 6 7.9 - 339 - + 6 7294 -− 9 4698 6
error34 + 6 0.7 - 279.8 - + 6 0.8 - 128.2 - + 6 11.7 - 567 - + 6 6322 - + 6 1282 -
error35 − 9 2.7 5 240.1 13 + 6 0.8 - 119.4 -− 9 45.3 6 1435 6− 9 15567 17 + 6 1123 -
error36 + 6 0.6 - 240.3 - + 6 0.7 - 177.3 - + 6 8.1 - 384 -− 9 17728 17− 9 4451 7
error37 − 9 2.7 6 215.8 6 + 6 0.7 - 191.9 -− 9 47.5 5 823 6 + 6 3629 -− 9 4452 7
error38 − 9 2.6 5 239.5 5 + 6 0.7 - 128.0 - + 6 6.9 - 480 -− 9 17833 18− 9 4917 7
error39 + 6 0.7 - 251.8 - + 6 0.7 - 345.9 -− 9 48.8 6 1046 6− 9 20083 19 + 6 1186 -
error40 + 6 0.9 - 339.4 - + 6 0.7 - 203.1 - + 6 7.7 - 236 -− 9 16729 18 + 6 922 -
error41 + 6 0.7 - 185.6 - + 6 0.8 - 223.4 - + 6 6.4 - 504 - + 6 5259 - + 6 954 -
error42 + 6 0.7 - 254.4 - + 6 0.7 - 222.9 - + 6 7.5 - 254 - + 6 3488 - + 6 808.8 -
error43 + 6 0.7 - 297.6 -− 9 2.5 7 338.3 3− 9 45.4 7 914 5 + 6 3534 - + 6 1169 -
error44 − 9 2.4 5 239.1 12− 9 2.4 7 222.9 9 + 6 13.4 - 2001 - + 6 4395 -− 9 4781 6
error45 + 6 0.7 - 219.7 -− 9 2.4 7 239.1 5− 9 49.1 6 1202 6− 9 15119 18 + 6 966 -
error46 + 6 0.6 - 356.3 - + 6 0.7 - 165.9 - + 6 5.8 - 404 - + 6 4544 - + 6 1124 -
error47 − 9 2.6 7 241.8 7 + 6 0.8 - 215.6 - + 6 9.2 - 1719 - + 6 6282 -− 9 4274 6
error48 + 6 0.7 - 289.9 - + 6 0.7 - 182.6 - + 6 8.7 - 434 - + 6 3351 -− 9 4445 7
error49 + 6 0.7 - 379.4 - + 6 0.7 - 215.9 - + 6 7.3 - 507 - + 6 7687 - + 6 1052 -
error50 − 9 2.5 5 234.7 5− 9 2.4 4 238.3 6− 9 50.2 5 979 5 + 6 5118 - + 6 909 -
error51 + 6 0.7 - 363.1 - + 6 0.7 - 159.5 - + 6 14.4 - 3122 - + 6 9681 - + 6 1212 -
error52 + 6 0.8 - 525.2 - + 6 0.6 - 269.4 -− 9 55.0 6 886 6− 9 12310 19 + 6 927 -
error53 + 6 0.7 - 270.5 - + 6 0.8 - 151.9 - + 6 17.0 - 2047 - + 6 4776 - + 6 1139 -
error54 + 6 0.7 - 294.5 - + 6 0.7 - 166.0 - + 6 7.4 - 767 - + 6 5830 - + 6 926 -
error55 + 6 0.7 - 201.7 - + 6 0.7 - 189.5 - + 6 9.3 - 1454 -− 9 12929 17 + 6 676 -
error56 − 9 2.5 6 244.6 6 + 6 0.6 - 223.6 - + 6 6.1 - 199 - + 6 5299 -− 9 4793 6
error57 − 9 2.6 6 225.7 9 + 6 0.6 - 176.4 - + 6 7.2 - 277 - + 6 11463 - + 6 485 -
error58 + 6 0.6 - 298.1 - + 6 0.6 - 208.5 - + 6 6.6 - 812 -− 9 19451 19− 9 4559 6
error59 + 6 0.7 - 258.9 -− 9 2.7 6 236.0 10 + 6 12.1 - 1325 - + 6 6277 -− 9 4803 6

Table 1 Results for the reachability properties. ”−” means that the error label is reachable
(i.e., the program fails). ”+” means that we have not found a counterexample; we thus
claim that the label is unreachable. w denotes the marks we associate with our results. t
is the number of inputs in the counterexample found. Time is given in wall-clock seconds.
|VC| gives the size of the VC in assignments.

Title Suppressed Due to Excessive Length 13

Problem1 Problem2 Problem3 Problem4
\n 9 10 11 12 13 14 9 10 11 12 13 14 9 10 11 12 13 14 9 10 11 12 13 14
0 >p >p >p >p >p >p >p >p >p >p >p >p > > > > > > ⊥p > > > > >
1 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p − − −
2 >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
3 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
4 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
5 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p − −
6 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
7 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
8 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p −
9 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p − −
10 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
11 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
12 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p − −
13 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
14 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p > > > > >
15 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
16 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
17 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p >
18 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p −
19 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
20 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
21 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
22 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
23 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − >p −
24 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
25 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
26 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p − −
27 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
28 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p −
29 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
30 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
31 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − − −
32 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p − −
33 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − − −
34 ⊥ − −
35 >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
36 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
37 >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
38 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
39 ⊥ − −
40 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
41 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
42 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
43 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
44 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
45 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
46 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p − − −
47 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
48 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
49 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p −
50 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
51 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p − −
52 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p − − −
53 >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
54 >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
55 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
56 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
57 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
58 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
59 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p − − −
60 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ − −
61 ⊥ − −
62 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p > > > > > > ⊥ ⊥ ⊥ ⊥ − −
63 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
64 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p − −
65 >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
66 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
67 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
68 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
69 >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
70 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ − −
71 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
72 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
73 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
74 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
75 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p > > > > > > ⊥ ⊥ ⊥ ⊥ − −
76 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p − − − −
77 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − >
78 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
79 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p − − −
80 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
81 ⊥ − −
82 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
83 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ ⊥ −
84 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
85 ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p −
86 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > > > > ⊥ ⊥ ⊥ ⊥ − −
87 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
88 >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
89 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p −
90 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p − −
91 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ − −
92 >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
93 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
94 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ − −
95 >p >p >p >p >p >p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p − −
96 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p ⊥p ⊥p ⊥p ⊥p ⊥p >p >p >p >p >p >p >p >p >p − >p −
97 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −
98 >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥p > > > > >
99 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >p >p >p >p >p >p >p >p >p >p >p >p ⊥ ⊥ ⊥ ⊥ − −

Table 2 Results for behavioral properties. Only claims are shown, for different unwinding
bounds (n = 9 to n = 14). “−” denotes a time-out (tmax = 3600s). Boldface denotes
changes in the outcomes as the unwinding bounds change.

