ECBS 2013

SMT-Bounded Model Checking
of C++ Programs

Mikhail Ramalho, Mauro Freitas, Felipe Sousa,
Hendrio Marques, Lucas Cordeiro, Bernd Fischer

S

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Bounded Model Checking (BMC)

ldea: check negation of given property up to given depth

g R - property
0o 0 -, O 0, 0O Oq |0«
transition ® > @ ,® ... @—— >0
system > Mo M, M, My .1 M.
_counterexample trace y bound

 transition system M unrolled k times

— for programs: unroll loops, unfold arrays, ...
 translated into verification condition Y such that

\p satisfiable iff § has counterexample of max. depth k

* has been applied successfully to verify (sequential)
software

BMC of C++ Programs

e there have been attempts to apply BMC to the
verification of C++ programs but with limited success

— handle large programs and support complex features

e problem: BMC of C++ programs presents greater
challenges than that of C programs

— more complex features such as templates, containers,
and exception handling (contains and handles error
situations in embedded systems)

e main insights:

— optimized implementation of the standard C++ library

complicates the VCs unnecessarily

— abstract representation of the standard C++ libraries to
conservatively approximate their semantics

Objetive of this work

Extend BMC to support complex features of C++

« exploit background theories of Satisfability Modulo
Theories (SMT) solvers

e provide suitable encodings for

— template — exception handling

— containers — arithmetic over- and underflow
e Dbuild and evaluate an SMT-based BMC tool

(ESBMC++)

— build on top of CBMC front-end
— use different SMT encodings as back-ends

ESBMC Architecture (1)

C
Source
C++
Source

 originally only ANSI-C language was supported

Goto
Programs
Converter

Goto
Symex

Solver

C C
Parser Typecheck
C++ C++
Parser Typecheck

e extend to support the verification of C++ programs with:
— template (creation and instantiation)

— exception handling (converted to goto functions)

— standart template library (operational model)

ESBMC Architecture (2)

C C C Goto | | G410
Programs Solver
Source Parser Typecheck Symex
Converter
C++ C++ C++
Source Parser Typecheck

» |lexer/parser based on the flex/bison

 most of the intermediate representation of the program
(IRep) Is created

— this IRep is the base for the remaining phases of the
verification

ESBMC Architecture (3)

C C
Source Parser
C++ C++
Source Parser

« some checks are made In this step:

C
Typecheck

C++
Typecheck

— assignment check

— typecast check
— pointer initialization check

— function call check
— template instantiation

Goto
Programs
Converter

Goto
Symex

Solver

ESBMC Architecture (4)

C R C C
Source Parser Typecheck
C++ C++ C++
Source Parser Typecheck

Goto

Programs
Converter

Goto
Symex

Solver

e conversion from IRep to goto programs:

I nt mai n()

{

| nt x=5;

| f (x==5)
return O;

return -1;

}

)

main() (c::main):
int x;
X =5;

IF I(x == 5) THEN GOTO 1
return O;
1: return -1;

END_FUNCTION

ESBMC Architecture (5)

Goto
Programs
Converter

C . C C
Source Parser Typecheck
C++ C++ C++
Source Parser Typecheck

e creation of SSA expressions
from goto programs:
— assertions are inserted to check

for pointer safety, memory-leak,
division by zero, etc

— jump instructions are inserted for
exception handling

Solver

< X X
I
X o u

A

. A I

X; = 5;

Y1 =Xy,

ESBMC Architecture (6)

Goto
Programs
Converter

Goto
Symex

Solver

C C C
Source Parser Typecheck
C++ C++ C++
Source Parser Typecheck

e encoding to bit-vector or integer/real arithmetic

 verification results can depend on encodings:

— majority of VCs solved faster if numeric types are
modelled by abstract domains but possible loss of

precision

SMT-Based BMC of C++ Programs

* there have been attempts to apply BMC to the
verification of C++ programs but with limited success

— handle large programs and support complex features

e standard C++ libraries contain complex (and low-level)
data structures (complicates the VCs unnecessarily)

— provide a C++ operational model (COM) which is an
abstract representation of the standard C++ libraries that
conservatively approximates their semantics

r \' o r==> g++compiler —>(exec_utable)
| file

Standard — = I

Libraries of C++ 1 |

o Programs 1

|
4 J I . g -
‘]_ - - . — > ESBMC4++ verification
result

COM

Container Model (1)

* the container model uses three variables:
— P that points to the first element of the array
— size that stores the guantity of elements in the container
— capacity that stores the total capacity of a container

* Iterators are modelled using two variables (source and pos)

container

->(e0 el {e2le3|... eN-lO - -
size = N T pos contains the index

. . terator value pointed by the
capacity < 2*size

_~—~terator in the container
source POS
P
p

7 — source points to the
underlying container

Container Model (2)

 the core container model only supports the insert,
erase, and search methods

— push_back, pop_back, front, back, push_front ,and
pop_front are variation of these basic methods

- : decrement the size
C((c',1') =cease(l)) = .
(.) :))/(of the container J
[c'sze=c.9ze-1 _ N

[Ic'.array = store(...(store(c.array, the exclusion is made

i. pos, select(c.array,i. pos+1)), by a given position,
regardless the value

c.size— 2, select(c.array,c.size—1))
[i'.source=C'
[i'.pos=1.pos

points to the position next
to the previously erased
part of the container

J

Inheritance and Polymorphism

* polymorphism allows the creation of reusable
code by changing only specific methods from the
base class

— In constrast to Java, C++ allows multiple inheritance
which increase the complexity of the static analysis

e In ESBMC++, each new class instantiation
replicate all the methods and attributes from the
base classes

— this feature allows base classes pointers to keep
reference to derived classes

— during verification time decides which method is being
called from such pointer

Running Example (1)

o triple <C, <., <, > where C is the set of classes
— shared inheritance <, € Cx C

— replicated inheritance <, € Cx C

e sguare class relation: <C, //, {(Square, Rectangle,
Shape), (Square, Rectangle, Display)}>

— direct access to the attributes T T
_ ||_110ye{} plot2D()
and methods of the derived class [0
o . i 5
— replicate information to any nml,.g.e — Tml‘gh
width: int {radius: float points: List
new class Lo area(area(

7Y

Square
width: int
areal)

Running Example (2)

Square (int w) : Rectangle(w,w) Square A
{ width = w; } constructor and pquare(10);
area method)== 100);

int area(void) { return width*width; }

J, = store(j,, vtable, Rectanl)

1], =store(J,, width 10)

1], =store(],, height 10)

C:=| U], = store(j,, vtable,Square)
1] = store(j,, width 10)
[return_value =

| (select(|5, width) x select(|5, width) |

P:=[return_value =100

Running Example (2)

Square (int w) :
{ width =w; }

Instantiation of
Shape *sqgre = new Square(10);

square and area

call | assert (sqre->area() == 100);
int area(void) { krmmmrwwmrrr’(

J, = store(j,,vtable, Rectanl))

1], = store(J,, width 10)

1], =store(],, height 10)

=| U], =store(J,, viable,Square)
[1)s =store(],, width 10)
[return_value =

| (select(|5, width) x select(|5, width) |

P:=[return_value =100

Running Example (2)

Square (int w) : Rectangle(w,w)

{ width=w; } Shape *sgre—= :
assert (sq Internal SMT

J

int area(void) { return width*width; } l representation

j, = store(j,,, vtable, Rectanl)))

1], = store(J,, width 10)

1], =store(],, height 10)

C:=|0]j, =store(J5, vtable,Square)
[1)s =store(],, width 10)
[return_value =

| (select(|5, width) x select(|5, width) |

P:=[return_value =100

Running Example (2)

le(w,w)

Shape *sqgre = new Square(10);
assert (sqre->area() == 100);

contain the address
of the object’s bound

methods idth;
_ S~ }

J, = store(j,,vtable, Rectanl))

1], = store(J,, width 10)

1], =store(],, height 10)

C:=|0]j, =store(J5, vtable,Square)
[1)s =store(],, width 10)
[return_value =

| (select(|5, width) x select(|5, width) |

P:=[return_value =100

Exception Handling (1)

e exceptions are unexpected situations within a C++
programs

— access an invalid position in a vector throws an
out_of range exception

« exception handling is divided into three elements: a try
block, a catch block, and a throw statement

int main (void) {
try { > try block

throw 1; = throw statement

¥

catch (int) { return 1; }

catch (char) { return 2; } catch block

return O;

Exception Handling (2)

try-catch conversion to goto functions (internal flow)

main():

CATCH signed _int- >1 char->2 jump when the
type is signed int

jump when the
type is char

N
This goto instruction
2: char #anon: IS modified Iif an
return 2: kexception IS thrown
3: return O;

END_FUNCTION

Exception Handling (2)

try-catch conversion to goto functions (internal flow)

main():
CATCH signed_int->1, char->2
THROW signed _int: 1
CATCH
GOTO 1

1"/int #anon:

| return 1;

GOTO 3 _ .)
This goto instruction

2: char #anon: IS modified Iif an
return 2; kexc:eption IS thrown

3: return O;
END_ FUNCTION

Experimental Results

« Goal: compare the efficiency of C++ verification on
1165 C++ programs using ESBMC and LLBMC

e Setup:
— ESBMC v1.20 with SMT Solver Z3 3.2
— LLBMC 2012.2a

— Intel Core i7-2600, 3.40 GHz with 24 GB of RAM
running Ubuntu 64-bits

About the benchmarks Vemory out
{ Time out W BAD THING
BAD THlNG/\
Number of N | L |[Tme| P | N | FP | FN | FAIL['TO | MO
programy% 3376 996 /63 //38 f6 ﬂz AN o 0
2 [Deque 43 | 2289 | 238/ 19 |f[20 | [p | /]| Crash
L 1/ 6853 | 27/4 | 95 /(37 |/3 |/ | | BADTHING E
Linesof code > 5472097 |/ o8 | 25] [25 || B rjf o] ofo
PR P 14 | 328/ /177 | 7/ | 7 Ll a1l o | o
Verification 12 2// g2 / / 6 Negative 0 0
time of the 51 /6 311 / 17 verification [0
\ ?W’%”ﬁ!ﬂ 6/7/ 13| a5 |/ é a1/ [~ ?A[_) THING 7, 0
190 zz:e:/ Positive Negative Ne'g{ati\{e g g g
verification verification verification
11 |“PP| GOOD THING /| GOOD THING J_BADTHING j ¢ | O | O
1165 [55953 [58386 [680 (354 | 42 | 92 | 7 | 0 | o

Experimental Results with ESBMC

Testsuite N L Time P N FP FN FAIL | TO MO

1 | Algorithm 130 | 3376 996 63 39 e = “7| O 0
2 | Deque 43 | 1239 | 238 | 19 | 2(___ STLmodules [
3 | Vector 146 | 6853 | 2714 95 3 11 0 0 0
4 | List 670 | 2292 | 3928 257 25 3 17 0 0 0
5 | Queue 14 328 177 7 7 0 0 0 0 0
6 | Stack 12 286 82 6 6 0 0 0 0 0
7 | Inheritance | 51 3460 311 28 17 1 2 3 0 0
8 | Try catch 67 4743 45 17 41 7 2 0 0 0
9 | Stream 66 1831 | 1892 51 13 0 2 0 0 0
10 | String 233 | 4921 | 48186 | 100 | 112 5 16 0 0 0
11 | Cpp 343 | 26624 | 1817 | 269 38 7 25 4 0 0

1165 | 55953 | 58386 | 680 | 354 | 42 92 7 0 0

Experimental Results with ESBMC

Testsuite N L Time P N FP FN FAIL | TO MO

1 |Algorithm | 130 | 3376 | 996 | 63 | 38 | 16 | 13 | 0 | 0 | O
2 | Deque 43 [1239 | 238 | 19 | 20 | o | 4 | o | o | o
3 | Vector 146 | 6853 | 2714 | 95 | 37 | 3 | 11 | o | o | o
4 | List 670 | 2292 [3928 | 25 | 25 | 3 | 17 | o | 0 | o
5 | Queue 14 328 177 7 7 Inheritance and D 0
6 |Stack 12 | 286 | 82 | 6 | 6 (exceptionhandling b | o
7 |Inheritance | 51 | 3460 | 311 | 28 | 121 | 2 | 3 | 0 | 0O
8 | Try catch 67 | 4743 | 45 | 17 | a1 | 7 2 0 0 0
9 | stream 66 | 1831 | 1892 | 51 | 13 | o | 2 | o | o | o
10 | String 233 | 4921 |48186| 100 | 112 | 5 | 16 | 0 | o | O
11 | Cpp 343 | 26624 | 1817 | 269 | 38 | 7 | 25 | 4 | o | o
1165 | 55953 | 58386 | 680 | 354 | 42 | 92 | 7 | 0 | o

Experimental Results with ESBMC

Testsuite N L Time P N FP FN FAIL TO MO

1 |Algorithm | 130 | 3376 | 996 | 63 | 38 | 16 | 13 | o | o | o
2 | Deque 43 1239 | 238 | 19| 20 | o | 4 | o | o | o
3 | Vector 146 | 6853 | 2714 | 95 | 37 | 3 | 11 | o | o | o
4 | List 670 | 2292 [3928 | 25 | 25 | 3 [17] o | o | o
5 | Queue 14 | 328 177 7| 7] 0] o] o] o] o
6 | Stack 12 | 286 | 82 |« L & 1l ol g o o] o
7 |inheritance | 51 | 3460 | 311 I/O Streams 3 | o | o
8 | Try catch 67 | 4743 | 45 Strings J 1ol ol o
9 | stream 66 | 1831 | 189251 | 13 | 0 o | o | o
10 | String 233 | 4921 |48186 | 100 | 112 | 5 | 16 | 0o | o | o
11 | cpp 343 | 26624 1817 | 269 | 38 | 7 | 25 | 4 | o | o
1165 | 55953 | 58386 | 680 | 354 | 42 | 92 | 7 | o | o

Experimental Results with ESBMC

Testsuite N L Time P N FP FN FAIL | TO MO

1 | Algorithm | 130 | 3376 | 996 | 63 | 38 | 16 | 13 | 0 | 0o | O
2 | Deque 43 | 1239 | 238 | 19 | 20 | o | 4 | o | o | o
3 | Vector 146 | 6853 | 2714 | 95 | 37 | 3 | 11 | o | o | o
4 | List 670 | 2292 | 3928 | 25 | 25 | 3 | 17 | o | o | o
5 | Queue 14 | 328 | 177 | 7 | 7 | o | o | o] o o
6 | Stack 12 | 286 | 82 6 | 6 | o] o| o | o] o
7 | Inheritance 51 3460 311 28 17 1 2 3 0 0
8 | Try catch 67 | 4743 —+=——=——2— 7 | 2 | 0 [O | O
9 | Stream 66 | 1831 Genericprograms =TT g [g
10 | String 233 | 4921\ from Deitel =T 0 | o | o
11 | Cpp 343 [26524 1817 | 269 | 38 | 7 | 25 | 4 0 0
1165 | 55953 | 58386 | 680 | 354 | 42 | 92 | 7 | 0 | o©

Comparison between ESBMC and
LLBMC

Testsuite Time P N FP FN [FAIL | TO | MO
1 | Algorithm | 996 63 38 16 13 0 0 0
2 | Deque 238 19 20 0 4 0 0 0
3 | Vector 2714 95 37 3 11 0 0 0
4 | List 3928 25 25 3 17 0 0 0
5 | Queue 177 7 7 0 0 0 0 0
6 | Stack 82 6 6 0 0 0 0 0
SN S £ 0 A 2 A B A |
1 | Algorithm | 22964 53 45 1 5 0 | 24 2
2 | Deque 8585 16 17 0 0 1 9 0
3 | Vector 7234 91 38 1 3 4 6 3
4 | List 2562 5 26 5 30 0 0 4
5 | Queue 45 6 7 0 1 0 0 0
6 | Stack 45 6 6 0 0 0 0 0
41435 | 177 | 139 7 39 5 |39 9

ESBMC

LLBMC

Comparison between ESBMC and

LLBMC

ESBMC

.

Testsuite Time P N FP FN FAIL | TO MO

1 | Inheritance | 311 28 17 1 2 3 0 0
2 | Try catch 45 17 41 7 2 0 0 0
356 45 58 8 4 3 0 0

1 |Inheritance | 122 | 32 | 12 | 1 | 3 [3 | 0 [©
2 | Try catch 4 0 1 0 0 66 0 0
126 32 13 1 3 69 0 0

LLBMC

Comparison between ESBMC and

LLBMC

ESBMC

.

Testsuite Time P N FP FN FAIL | TO MO
1 | Stream 1892 | 51 13 0 2 0 0 0
2 | String 46186 | 100 | 112 5 16 0 0 0
- = 48078 | 151 | 125 _ > 1 18 |0 1 _O0_[O _
1 | Stream 11 17 13 0 35 1 0 0
2 | String 37 6 121 4 102 0 0 0
48 23 134 4 137 1 0 0

LLBMC

Comparison between ESBMC and
LLBMC

Testsuite Time P N FP FN FAIL | TO MO |_

1 | Cpp 1817 69 B8 [7 s @4 o P / ESBMC

J\L

58386 | 680 | 354 42 92 7 0 0

1 | Ccpp 3260 235 |24 |10 |56 |15 |2 1 LLBMC

Yo
y

44869 | 467 | 310 22 235 90 41 10

« ESBMC++ took approximately 16 hours and
successfully verified 1046 out of 1165 (89%)

 LLBMC took approximately 12 hours and successfully
verified 777 out of 1165 (66%)

Experimental Results Sniffer Code

« ESBMC++ was used to verify a commercial
application provided by Nokia Institute of Technology
(INdT)

 The sniffer code contains 20 classes, 85 methods, and
approximately 2839 lines of C++ code

* Five bugs were identified that were related to arithmetic
under- and over-flow. The bugs were later confirmed by
the developers

Conclusions

« SMT-based verification of C++ programs by focusing
on the major features of the language

e Described the implementation of STL containers,
iInheritance, polymorphism and exception handling

— In particular, exception specification, which is a feature that
IS not supported by others BMC tools

« ESBMC++ outperforms LLBMC if we consider the
verification of C++ programs

— with increased accuracy (i.e. exception enabled verification)

 Also, ESBMC++ was able to find undiscovered bugs
In the sniffer code, a commercial application

