
SMT-Bounded Model Checking
of C++ Programs

ECBS 2013

Mikhail Ramalho, Mauro Freitas, Felipe Sousa,
Hendrio Marques, Lucas Cordeiro, Bernd Fischer

Bounded Model Checking (BMC)

Idea: check negation of given property up to given depth

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk

counterexample trace

∨ ∨ ∨ ∨
transition
system

property

bound

• transition system M unrolled k times
– for programs: unroll loops, unfold arrays, …

• translated into verification condition ψ such that
ψψψψ satisfiable iff ϕϕϕϕ has counterexample of max. depth k

• has been applied successfully to verify (sequential)
software

counterexample trace

• there have been attempts to apply BMC to the
verification of C++ programs but with limited success
– handle large programs and support complex features

• problem: BMC of C++ programs presents greater
challenges than that of C programs
– more complex features such as templates, containers,

BMC of C++ Programs

– more complex features such as templates, containers,
and exception handling (contains and handles error
situations in embedded systems)

• main insights:
– optimized implementation of the standard C++ library

complicates the VCs unnecessarily

– abstract representation of the standard C++ libraries to
conservatively approximate their semantics

• exploit background theories of Satisfability Modulo
Theories (SMT) solvers

• provide suitable encodings for
– template – exception handling

Extend BMC to support complex features of C++

Objetive of this work

– template – exception handling
– containers – arithmetic over- and underflow

• build and evaluate an SMT-based BMC tool
(ESBMC++)
– build on top of CBMC front-end
– use different SMT encodings as back-ends

C
Source

C
Parser

C
Typecheck

C++
Parser

C++
Typecheck

Goto
Programs
Converter

Goto
Symex

Solver

C++
Source

ESBMC Architecture (1)

• originally only ANSI-C language was supported

• extend to support the verification of C++ programs with:
– template (creation and instantiation)

– exception handling (converted to goto functions)

– standart template library (operational model)

C
Source

C
Parser

C
Typecheck

C++
Parser

C++
Typecheck

Goto
Programs
Converter

Goto
Symex

Solver

C++
Source

ESBMC Architecture (2)

• lexer/parser based on the flex/bison

• most of the intermediate representation of the program
(IRep) is created

– this IRep is the base for the remaining phases of the
verification

C
Parser

C
Typecheck

C++
Parser

C++
Typecheck

Goto
Programs
Converter

Goto
Symex

Solver
C

Source

C++
Source

ESBMC Architecture (3)

• some checks are made in this step:
– assignment check
– typecast check
– pointer initialization check
– function call check
– template instantiation

C
Parser

C
Typecheck

C++
Parser

C++
Typecheck

Goto
Programs
Converter

Goto
Symex

Solver
C

Source

C++
Source

ESBMC Architecture (4)

• conversion from IRep to goto programs:
int main()
{

int x=5;

if(x==5)
return 0;

return -1;
}

main() (c::main):

int x;

x = 5;

IF !(x == 5) THEN GOTO 1

return 0;

1: return -1;

END_FUNCTION

C
Parser

C
Typecheck

C++
Parser

C++
Typecheck

Goto
Programs
Converter

Goto
Symex

Solver
C

Source

C++
Source

ESBMC Architecture (5)

• creation of SSA expressions
from goto programs:
– assertions are inserted to check

for pointer safety, memory-leak,
division by zero, etc

– jump instructions are inserted for
exception handling

x1 = 5;

x2 = 6;

y1 = x2;

x = 5;

x = 6;

y = x;
0

0

0

C
Parser

C
Typecheck

C++
Parser

C++
Typecheck

Goto
Programs
Converter

Goto
Symex

Solver
C

Source

C++
Source

ESBMC Architecture (6)

• encoding to bit-vector or integer/real arithmetic

• verification results can depend on encodings:

– majority of VCs solved faster if numeric types are
modelled by abstract domains but possible loss of
precision

• there have been attempts to apply BMC to the
verification of C++ programs but with limited success
– handle large programs and support complex features

• standard C++ libraries contain complex (and low-level)
data structures (complicates the VCs unnecessarily)
– provide a C++ operational model (COM) which is an

SMT-Based BMC of C++ Programs

– provide a C++ operational model (COM) which is an
abstract representation of the standard C++ libraries that
conservatively approximates their semantics

Standard
Libraries of C++

COM

C++ Programs

g++ compiler

ESBMC++

executable
file

verification
result

• the container model uses three variables:
– P that points to the first element of the array

– size that stores the quantity of elements in the container

– capacity that stores the total capacity of a container

• iterators are modelled using two variables (source and pos)

Container Model (1)

container

size = N

capacity < 2*size

P
source pos

e0 e1 e2 e3 ... eN-1

container

iterator

pos contains the index
value pointed by the

iterator in the container

source points to the
underlying container

• the core container model only supports the insert,
erase, and search methods
– push_back, pop_back, front, back, push_front ,and

pop_front are variation of these basic methods

sizecsizec

ierasecicC

1.'.

:))(.)','((

−=∧
==

Container Model (2)

decrement the size
of the container

posiposi

csourcei

sizecarraycselectsizec

posiarraycselectposi

arraycstorestorearrayc

sizecsizec

.'.

''.

))1.,.(,2.

...,

)),1.,.(,.

,.((...('.

1.'.

=∧
=∧

−−

+
=∧

−=∧
of the container

the exclusion is made
by a given position,
regardless the value

points to the position next
to the previously erased

part of the container

Inheritance and Polymorphism

• polymorphism allows the creation of reusable
code by changing only specific methods from the
base class
– in constrast to Java, C++ allows multiple inheritance

which increase the complexity of the static analysis

• in ESBMC++, each new class instantiation • in ESBMC++, each new class instantiation
replicate all the methods and attributes from the
base classes
– this feature allows base classes pointers to keep

reference to derived classes

– during verification time decides which method is being
called from such pointer

• triple <C, ≺s, ≺r > where C is the set of classes

– shared inheritance ≺s ⊆ C x C

– replicated inheritance ≺r ⊆ C x C

• square class relation: <C, ∅, {(Square, Rectangle,
Shape), (Square, Rectangle, Display)}>

Running Example (1)

≺ ⊆

Shape), (Square, Rectangle, Display)}>

– direct access to the attributes

and methods of the derived class

– replicate information to any

new class

Running Example (2)

Square (int w) : Rectangle(w,w)

{ width = w; }

int area(void) { return width*width; }

Shape *sqre = new Square(10);

assert (sqre->area() == 100);

Square
constructor and

area method

)Rectanle,(01  ,= vtablejstorej

]100_[:

),(),((

_

)10,,(

Square),,(

)10,,(

)10,,(

)Rectanle,(

:

1

55

1

45

34

23

12

01

==





























×
=∧

=∧
=∧
=∧
=∧

,=

=

valuereturnP

widthjselectwidthjselect

valuereturn

widthjstorej

vtablejstorej

heightjstorej

widthjstorej

vtablejstorej

C

Running Example (2)

Square (int w) : Rectangle(w,w)

{ width = w; }

int area(void) { return width*width; }

Shape *sqre = new Square(10);

assert (sqre->area() == 100);

Instantiation of
square and area

call

)Rectanle,(01  ,= vtablejstorej

]100_[:

),(),((

_

)10,,(

Square),,(

)10,,(

)10,,(

)Rectanle,(

:

1

55

1

45

34

23

12

01

==





























×
=∧

=∧
=∧
=∧
=∧

,=

=

valuereturnP

widthjselectwidthjselect

valuereturn

widthjstorej

vtablejstorej

heightjstorej

widthjstorej

vtablejstorej

C

Running Example (2)

Square (int w) : Rectangle(w,w)

{ width = w; }

int area(void) { return width*width; }

Shape *sqre = new Square(10);

assert (sqre->area() == 100);Internal SMT
representation

)Rectanle,(01  ,= vtablejstorej

]100_[:

),(),((

_

)10,,(

Square),,(

)10,,(

)10,,(

)Rectanle,(

:

1

55

1

45

34

23

12

01

==





























×
=∧

=∧
=∧
=∧
=∧

,=

=

valuereturnP

widthjselectwidthjselect

valuereturn

widthjstorej

vtablejstorej

heightjstorej

widthjstorej

vtablejstorej

C

Running Example (2)

Square (int w) : Rectangle(w,w)

{ width = w; }

int area(void) { return width*width; }

Shape *sqre = new Square(10);

assert (sqre->area() == 100);

contain the address
of the object’s bound

methods

)Rectanle,(01  ,= vtablejstorej

]100_[:

),(),((

_

)10,,(

Square),,(

)10,,(

)10,,(

)Rectanle,(

:

1

55

1

45

34

23

12

01

==





























×
=∧

=∧
=∧
=∧
=∧

,=

=

valuereturnP

widthjselectwidthjselect

valuereturn

widthjstorej

vtablejstorej

heightjstorej

widthjstorej

vtablejstorej

C

• exceptions are unexpected situations within a C++
programs
– access an invalid position in a vector throws an

out_of_range exception

• exception handling is divided into three elements: a try
block, a catch block, and a throw statement

Exception Handling (1)

block, a catch block, and a throw statement

int main (void) {

try {

throw 1;

}

catch (int) { return 1; }

catch (char) { return 2; }

return 0;

}

try block
throw statement

catch block

main():
CATCH signed_int->1, char->2
THROW signed_int: 1
CATCH
GOTO 3

1: int #anon;

try-catch conversion to goto functions (internal flow)

jump when the
type is char

jump when the
type is signed int

Exception Handling (2)

1: int #anon;
return 1;
GOTO 3

2: char #anon;
return 2;

3: return 0;
END_FUNCTION

type is char

This goto instruction
is modified if an
exception is thrown

main():
CATCH signed_int->1, char->2
THROW signed_int: 1
CATCH
GOTO 1

1: int #anon;

try-catch conversion to goto functions (internal flow)

Exception Handling (2)

1: int #anon;
return 1;
GOTO 3

2: char #anon;
return 2;

3: return 0;
END_FUNCTION

This goto instruction
is modified if an
exception is thrown

• Goal: compare the efficiency of C++ verification on
1165 C++ programs using ESBMC and LLBMC

• Setup:
– ESBMC v1.20 with SMT Solver Z3 3.2

Experimental Results

– ESBMC v1.20 with SMT Solver Z3 3.2
– LLBMC 2012.2a
– Intel Core i7-2600, 3.40 GHz with 24 GB of RAM

running Ubuntu 64-bits

Testsuite N L Time P N FP FN FAIL TO MO

1 Algorithm 130 3376 996 63 38 16 13 0 0 0

2 Deque 43 1239 238 19 20 0 4 0 0 0

3 Vector 146 6853 2714 95 37 3 11 0 0 0

4 List 670 2292 3928 25 25 3 17 0 0 0

Number of

programs

Lines of code

Crash

BAD THING

Time out

BAD THING

Memory out

BAD THING

About the benchmarks

5 Queue 14 328 177 7 7 0 0 0 0 0

6 Stack 12 286 82 6 6 0 0 0 0 0

7 Inheritance 51 3460 311 28 17 1 2 3 0 0

8 Try catch 67 4743 45 17 41 7 2 0 0 0

9 Stream 66 1831 1892 51 13 0 2 0 0 0

10 String 233 4921 48186 100 112 5 16 0 0 0

11 Cpp 343 26624 1817 269 38 7 25 4 0 0

1165 55953 58386 680 354 42 92 7 0 0

Verification

time of the

modules (s)

Positive

verification

GOOD THING

Negative

verification

GOOD THING

Negative

verification

BAD THING

Negative

verification

BAD THING

Testsuite N L Time P N FP FN FAIL TO MO

1 Algorithm 130 3376 996 63 38 16 13 0 0 0

2 Deque 43 1239 238 19 20 0 4 0 0 0

3 Vector 146 6853 2714 95 37 3 11 0 0 0

4 List 670 2292 3928 25 25 3 17 0 0 0

5 Queue 14 328 177 7 7 0 0 0 0 0

STL modules

Experimental Results with ESBMC

5 Queue 14 328 177 7 7 0 0 0 0 0

6 Stack 12 286 82 6 6 0 0 0 0 0

7 Inheritance 51 3460 311 28 17 1 2 3 0 0

8 Try catch 67 4743 45 17 41 7 2 0 0 0

9 Stream 66 1831 1892 51 13 0 2 0 0 0

10 String 233 4921 48186 100 112 5 16 0 0 0

11 Cpp 343 26624 1817 269 38 7 25 4 0 0

1165 55953 58386 680 354 42 92 7 0 0

Testsuite N L Time P N FP FN FAIL TO MO

1 Algorithm 130 3376 996 63 38 16 13 0 0 0

2 Deque 43 1239 238 19 20 0 4 0 0 0

3 Vector 146 6853 2714 95 37 3 11 0 0 0

4 List 670 2292 3928 25 25 3 17 0 0 0

5 Queue 14 328 177 7 7 0 0 0 0 0Inheritance and

Experimental Results with ESBMC

5 Queue 14 328 177 7 7 0 0 0 0 0

6 Stack 12 286 82 6 6 0 0 0 0 0

7 Inheritance 51 3460 311 28 17 1 2 3 0 0

8 Try catch 67 4743 45 17 41 7 2 0 0 0

9 Stream 66 1831 1892 51 13 0 2 0 0 0

10 String 233 4921 48186 100 112 5 16 0 0 0

11 Cpp 343 26624 1817 269 38 7 25 4 0 0

1165 55953 58386 680 354 42 92 7 0 0

Inheritance and

exception handling

Testsuite N L Time P N FP FN FAIL TO MO

1 Algorithm 130 3376 996 63 38 16 13 0 0 0

2 Deque 43 1239 238 19 20 0 4 0 0 0

3 Vector 146 6853 2714 95 37 3 11 0 0 0

4 List 670 2292 3928 25 25 3 17 0 0 0

5 Queue 14 328 177 7 7 0 0 0 0 0

Experimental Results with ESBMC

5 Queue 14 328 177 7 7 0 0 0 0 0

6 Stack 12 286 82 6 6 0 0 0 0 0

7 Inheritance 51 3460 311 28 17 1 2 3 0 0

8 Try catch 67 4743 45 17 41 7 2 0 0 0

9 Stream 66 1831 1892 51 13 0 2 0 0 0

10 String 233 4921 48186 100 112 5 16 0 0 0

11 Cpp 343 26624 1817 269 38 7 25 4 0 0

1165 55953 58386 680 354 42 92 7 0 0

I/O Streams

Strings

Testsuite N L Time P N FP FN FAIL TO MO

1 Algorithm 130 3376 996 63 38 16 13 0 0 0

2 Deque 43 1239 238 19 20 0 4 0 0 0

3 Vector 146 6853 2714 95 37 3 11 0 0 0

4 List 670 2292 3928 25 25 3 17 0 0 0

5 Queue 14 328 177 7 7 0 0 0 0 0

Experimental Results with ESBMC

5 Queue 14 328 177 7 7 0 0 0 0 0

6 Stack 12 286 82 6 6 0 0 0 0 0

7 Inheritance 51 3460 311 28 17 1 2 3 0 0

8 Try catch 67 4743 45 17 41 7 2 0 0 0

9 Stream 66 1831 1892 51 13 0 2 0 0 0

10 String 233 4921 48186 100 112 5 16 0 0 0

11 Cpp 343 26624 1817 269 38 7 25 4 0 0

1165 55953 58386 680 354 42 92 7 0 0

Generic programs

from Deitel

Testsuite Time P N FP FN FAIL TO MO

1 Algorithm 996 63 38 16 13 0 0 0

2 Deque 238 19 20 0 4 0 0 0

3 Vector 2714 95 37 3 11 0 0 0

4 List 3928 25 25 3 17 0 0 0

5 Queue 177 7 7 0 0 0 0 0

6 Stack 82 6 6 0 0 0 0 0

Comparison between ESBMC and
LLBMC

ESBMC

6 Stack 82 6 6 0 0 0 0 0

8135 215 133 22 45 0 0 0

1 Algorithm 22964 53 45 1 5 0 24 2

2 Deque 8585 16 17 0 0 1 9 0

3 Vector 7234 91 38 1 3 4 6 3

4 List 2562 5 26 5 30 0 0 4

5 Queue 45 6 7 0 1 0 0 0

6 Stack 45 6 6 0 0 0 0 0

41435 177 139 7 39 5 39 9

LLBMC

Testsuite Time P N FP FN FAIL TO MO

1 Inheritance 311 28 17 1 2 3 0 0

2 Try catch 45 17 41 7 2 0 0 0
ESBMC

Comparison between ESBMC and
LLBMC

2 Try catch 45 17 41 7 2 0 0 0

356 45 58 8 4 3 0 0

1 Inheritance 122 32 12 1 3 3 0 0

2 Try catch 4 0 1 0 0 66 0 0

126 32 13 1 3 69 0 0

ESBMC

LLBMC

Testsuite Time P N FP FN FAIL TO MO

1 Stream 1892 51 13 0 2 0 0 0
ESBMC

Comparison between ESBMC and
LLBMC

2 String 46186 100 112 5 16 0 0 0

48078 151 125 5 18 0 0 0

1 Stream 11 17 13 0 35 1 0 0

2 String 37 6 121 4 102 0 0 0

48 23 134 4 137 1 0 0

ESBMC

LLBMC

Testsuite Time P N FP FN FAIL TO MO

1 Cpp 1817 269 38 7 25 4 0 0

58386 680 354 42 92 7 0 0

1 Cpp 3260 235 24 10 56 15 2 1

44869 467 310 22 235 90 41 10

ESBMC

LLBMC

Comparison between ESBMC and
LLBMC

44869 467 310 22 235 90 41 10

• ESBMC++ took approximately 16 hours and
successfully verified 1046 out of 1165 (89%)

• LLBMC took approximately 12 hours and successfully
verified 777 out of 1165 (66%)

• ESBMC++ was used to verify a commercial
application provided by Nokia Institute of Technology
(INdT)

• The sniffer code contains 20 classes, 85 methods, and

Experimental Results Sniffer Code

• The sniffer code contains 20 classes, 85 methods, and
approximately 2839 lines of C++ code

• Five bugs were identified that were related to arithmetic
under- and over-flow. The bugs were later confirmed by
the developers

• SMT-based verification of C++ programs by focusing
on the major features of the language

• Described the implementation of STL containers,
inheritance, polymorphism and exception handling
– in particular, exception specification, which is a feature that

Conclusions

– in particular, exception specification, which is a feature that
is not supported by others BMC tools

• ESBMC++ outperforms LLBMC if we consider the
verification of C++ programs
– with increased accuracy (i.e. exception enabled verification)

• Also, ESBMC++ was able to find undiscovered bugs
in the sniffer code, a commercial application

