ECBS 2013

SMT-Bounded Model Checking of C++ Programs

Mikhail Ramalho, **Mauro Freitas**, Felipe Sousa, Hendrio Marques, Lucas Cordeiro, Bernd Fischer

Bounded Model Checking (BMC)

Idea: check negation of given property up to given depth

- transition system M unrolled k times
 - for programs: unroll loops, unfold arrays, ...
- translated into verification condition ψ such that
 ψ satisfiable iff φ has counterexample of max. depth k
- has been applied successfully to verify (sequential) software

BMC of C++ Programs

- there have been attempts to apply BMC to the verification of C++ programs but with limited success
 - handle large programs and support complex features
- problem: BMC of C++ programs presents greater challenges than that of C programs
 - more complex features such as templates, containers, and exception handling (contains and handles error situations in embedded systems)
- main insights:
 - optimized implementation of the standard C++ library complicates the VCs unnecessarily
 - abstract representation of the standard C++ libraries to conservatively approximate their semantics

Objetive of this work

Extend BMC to support complex features of C++

- exploit background theories of Satisfability Modulo Theories (SMT) solvers
- provide suitable encodings for
 - template exception handling
 - containers
 arithmetic over- and underflow
- build and evaluate an SMT-based BMC tool (ESBMC++)
 - build on top of CBMC front-end
 - use different SMT encodings as back-ends

ESBMC Architecture (1)

- originally only ANSI-C language was supported
- extend to support the verification of C++ programs with:
 - template (creation and instantiation)
 - exception handling (converted to goto functions)
 - standart template library (operational model)

ESBMC Architecture (2)

- lexer/parser based on the flex/bison
- most of the intermediate representation of the program (IRep) is created
 - this IRep is the base for the remaining phases of the verification

ESBMC Architecture (3)

- some checks are made in this step:
 - assignment check
 - typecast check
 - pointer initialization check
 - function call check
 - template instantiation

ESBMC Architecture (4)

conversion from IRep to goto programs:

ESBMC Architecture (5)

- creation of SSA expressions from goto programs:
 - assertions are inserted to check for pointer safety, memory-leak, division by zero, etc
 - jump instructions are inserted for exception handling

ESBMC Architecture (6)

- encoding to bit-vector or integer/real arithmetic
- verification results can depend on encodings:
 - majority of VCs solved faster if numeric types are modelled by abstract domains but possible loss of precision

SMT-Based BMC of C++ Programs

- there have been attempts to apply BMC to the verification of C++ programs but with limited success
 - handle large programs and support complex features
- standard C++ libraries contain complex (and low-level) data structures (complicates the VCs unnecessarily)
 - provide a C++ operational model (COM) which is an abstract representation of the standard C++ libraries that conservatively approximates their semantics

Container Model (1)

- the container model uses three variables:
 - P that points to the first element of the array
 - size that stores the quantity of elements in the container
 - capacity that stores the total capacity of a container
- iterators are modelled using two variables (source and pos)

Container Model (2)

- the core container model only supports the insert, erase, and search methods
 - push_back, pop_back, front, back, push_front ,and pop_front are variation of these basic methods

part of the container

Inheritance and Polymorphism

- polymorphism allows the creation of reusable code by changing only specific methods from the base class
 - in constrast to Java, C++ allows multiple inheritance which increase the complexity of the static analysis
- in ESBMC++, each new class instantiation replicate all the methods and attributes from the base classes
 - this feature allows base classes pointers to keep reference to derived classes
 - during verification time decides which method is being called from such pointer

- triple $\langle C, \langle s, \langle r \rangle \rangle$ where C is the set of classes
 - shared inheritance \prec_s ⊆ C x C
 - replicated inheritance \prec_r ⊆ C x C
- square class relation: <C, Ø, {(Square, Rectangle, Shape), (Square, Rectangle, Display)}>
 - direct access to the attributes
 and methods of the derived class
 - replicate information to any new class


```
Square (int w) : Rectangle(w,w) { width = w; }
```

Square constructor and area method

```
Square(10);
== 100);
```

int area(void) { return width*width; }

```
Square (int w): Instantiation of square and area call int area(void) { return widtn*widtn; }
```

```
Shape *sqre = new Square(10);
assert (sqre->area() == 100);
```

```
\begin{bmatrix} j_1 = store(j_0, vtable, Rectanle) \\ \land j_2 = store(j_1, width, 10) \\ \land j_3 = store(j_2, height, 10) \\ C := \land j_4 = store(j_3, vtable, Square) \\ \land j_5 = store(j_4, width, 10) \\ \land return\_value_1 = \\ (select(j_5, width) \times select(j_5, width) \end{bmatrix}
P := [return\_value_1 = 100]
```

```
Square (int w) : Rectangle(w,w)
                                                                                                                                                                                                                                                                                                                                                  Shape *sqro - now Square(10):
{ width = w; }
                                                                                                                                                                                                                                                                                                                                                 assert (sq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Internal SMT
int area(void) { return width*width; }
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 representation
                                                                                                                                                                                j_1 = store(j_0, vtable, Rectanle)
                                                                                                                                                                                  \wedge j_2 = store(j_1, width, 10)
                                                                                                                                                                                  \wedge j_3 = store(j_2, height, 10)
                                                                                                                                        C := \bigwedge_{i=1}^{n} \int_{a}^{b} \int_{a}^{
                                                                                                                                                                                   \wedge j_5 = store(j_4, width, 10)
                                                                                                                                                                                   \land return \_ value<sub>1</sub> =
                                                                                                                                                                                  (select(j_5, width) \times select(j_5, width)
                                                                                                                                                                                                     P := [return \_value_1 = 100]
```

```
contain the address of the object's bound methods *width; }
```

```
Shape *sqre = new Square(10); assert (sqre->area() == 100);
```

Exception Handling (1)

- exceptions are unexpected situations within a C++ programs
 - access an invalid position in a vector throws an out_of_range exception
- exception handling is divided into three elements: a try block, a catch block, and a throw statement

Exception Handling (2)

try-catch conversion to goto functions (internal flow)

```
main():
       CATCH signed_int->1, char->2
                                            jump when the
       THROW signed into
                                           type is signed int
       CATCH
       GOTO 3
                                    jump when the
       int #anen;
                                      type is char
       return 1;
       GOTO 3
                      This goto instruction
                      is modified if an
       char #anon;
                      exception is thrown
       return 2;
3:
       return 0;
       END FUNCTION
```

Exception Handling (2)

try-catch conversion to goto functions (internal flow)

```
main():
       CATCH signed_int->1, char->2
       THROW signed_int: 1
       CATCH
       GOTO 1
       int #anon;
       return 1;
       GOTO 3
                      This goto instruction
                      is modified if an
       char #anon;
2:
                      exception is thrown
       return 2;
3:
       return 0;
       END FUNCTION
```

Experimental Results

 Goal: compare the efficiency of C++ verification on 1165 C++ programs using ESBMC and LLBMC

- Setup:
 - ESBMC v1.20 with SMT Solver Z3 3.2
 - LLBMC 2012.2a
 - Intel Core i7-2600, 3.40 GHz with 24 GB of RAM running Ubuntu 64-bits

About the benchmarks

Time out
BAD THING

Memory out BAD THING

									<i>─</i>		
Nu	umber of	N	L	Time	Р	N	FP	FN	FAIL	ТО	МО
pı	rograms 🕺	17.0	3376	996	63	38	6	1/3		0	0
2	Deque	43	1/239	238//	19	20) b		ľ	Crash	
<u></u>	Vact	10	6853	27/4	95	37	В		BA	D THI	NG
Line	es of code	570	2292	<i>j</i> 28	25	25	3		0	0	0
5	المال	14	328	177	7	7	9/		Λ	0	0
	Verification		25 / 82			6		Nega		0	0
	me of the	51	/ 0	311		17	ŀ	verific		0	0
m	odules (s)	67	743	45	7 [41		BAD T	HING	0	0
9	Stre	citivo	3	Nogat	l		— Negati	ive	0	0	0
10	10 Strir verification		n	Negativerification verification			verification		0	0	0
11	Cnn	D THIN		SOOD T			AD TH		4	0	0
		1165	55953	58386	680	354	42	92	7	0	0

	Testsuite	N	L	Time	Р	N	FP	FN	FAIL	ТО	МО
1	Algorithm	130	3376	996	63	38	CTI	43		0	0
2	Deque	43	1239	238	19	2	SILM	nodule	25	0	0
3	Vector	146	6853	2714	95	3.	3	11	0	0	0
4	List	670	2292	3928	25	25	3	17	0	0	0
5	Queue	14	328	177	7	7	0	0	0	0	0
6	Stack	12	286	82	6	6	0	0	0	0	0
7	Inheritance	51	3460	311	28	17	1	2	3	0	0
8	Try catch	67	4743	45	17	41	7	2	0	0	0
9	Stream	66	1831	1892	51	13	0	2	0	0	0
10	String	233	4921	48186	100	112	5	16	0	0	0
11	Срр	343	26624	1817	269	38	7	25	4	0	0
		1165	55953	58386	680	354	42	92	7	0	0

	Testsuite	N	L	Time	Р	N	FP	FN	FAIL	ТО	МО
1	Algorithm	130	3376	996	63	38	16	13	0	0	0
2	Deque	43	1239	238	19	20	0	4	0	0	0
3	Vector	146	6853	2714	95	37	3	11	0	0	0
4	List	670	2292	3928	25	25	3	17	0	0	0
5	Queue	14	328	177	7	7	Inhe	eritand	ce and	þ	0
6	Stack	12	286	82	6	6	ехсер	tion h	andlin	g b	0
7	Inheritance	51	3460	311	28	17	1	2	3	0	0
8	Try catch	67	4743	45	17	41	7	2	0	0	0
9	Stream	66	1831	1892	51	13	0	2	0	0	0
10	String	233	4921	48186	100	112	5	16	0	0	0
11	Срр	343	26624	1817	269	38	7	25	4	0	0
		1165	55953	58386	680	354	42	92	7	0	0

	Testsuite	N	L	Time	Р	N	FP	FN	FAIL	ТО	МО
1	Algorithm	130	3376	996	63	38	16	13	0	0	0
2	Deque	43	1239	238	19	20	0	4	0	0	0
3	Vector	146	6853	2714	95	37	3	11	0	0	0
4	List	670	2292	3928	25	25	3	17	0	0	0
5	Queue	14	328	177	7	7	0	0	0	0	0
6	Stack	12	286	82	6	6	Ω	<u> </u>	0	0	0
7	Inheritance	51	3460	311	1/	O Stre			3	0	0
8	Try catch	67	4743	45		Strin	gs -		0	0	0
9	Stream	66	1831	1892	51	13	0	2	0	0	0
10	String	233	4921	48186	100	112	5	16	0	0	0
11	Срр	343	26624	1817	269	38	7	25	4	0	0
		1165	55953	58386	680	354	42	92	7	0	0

	Testsuite	N	L	Time	Р	N	FP	FN	FAIL	ТО	МО
1	Algorithm	130	3376	996	63	38	16	13	0	0	0
2	Deque	43	1239	238	19	20	0	4	0	0	0
3	Vector	146	6853	2714	95	37	3	11	0	0	0
4	List	670	2292	3928	25	25	3	17	0	0	0
5	Queue	14	328	177	7	7	0	0	0	0	0
6	Stack	12	286	82	6	6	0	0	0	0	0
7	Inheritance	51	3460	311	28	17	1	2	3	0	0
8	Try catch	67	4743	Λ.F.	17	11	7	2	0	0	0
9	Stream	66	1831	Generi			0	2	0	0	0
10	String	233	4921	Jroi V	n Deit	<i>e</i> i	5	16	0	0	0
11	Срр	343	26524	1817	269	38	7	25	4	0	0
		1165	55953	58386	680	354	42	92	7	0	0

	Testsuite	Time	Р	N	FP	FN	FAIL	ТО	МО
1	Algorithm	996	63	38	16	13	0	0	0
2	Deque	238	19	20	0	4	0	0	0
3	Vector	2714	95	37	3	11	0	0	0
4	List	3928	25	25	3	17	0	0	0
5	Queue	177	7	7	0	0	0	0	0
6	Stack	82	6	6	0	0	0	0	0
		8135	215	133	22	45	0	0	0
1	Algorithm	22964	53	45	1	5	0	24	2
2	Deque	8585	16	17	0	0	1	9	0
3	Vector	7234	91	38	1	3	4	6	3
4	List	2562	5	26	5	30	0	0	4
5	Queue	45	6	7	0	1	0	0	0
6	Stack	45	6	6	0	0	0	0	0
		41435	177	139	7	39	5	39	9

ESBMC

LLBMC

	Testsuite	Time	Р	N	FP	FN	FAIL	TO	МО	
1	Inheritance	311	28	17	1	2	3	0	0	ESBMC
2	Try catch	45	17	41	7	2	0	0	0	
		356	45	58	8	4	3	0	0	
	Inheritance	122	32	12	1	3	3	0	0	
2	Try catch	4	0	1	0	0	66	0	0	LLBMC
		126	32	13	1	3	69	0	0	

		48	23	134	4	137	1	0	0	
2	String	37	6	121	4	102	0	0	0	-
1	Stream	11	17	13	0	35	1	0	0	LLBMC
		<u>48078</u>	<u> 151</u>	125	_ 5	<u>1</u> 8_	0	_0_	0_	
2	String	46186	100	112	5	16	0	0	0	
1	Stream	1892	51	13	0	2	0	0	0	ESBMC
	Testsuite	Time	Р	Ν	FP	FN	FAIL	TO	МО	

	Testsuite	Time	Р	N	FP	FN	FAIL	ТО	МО	ָ ר	FORMO
1	Срр	1817	269	38	7	25	4	0	0	-<	ESBMC
		58386	680	354	42	92	_ 7 _	_0_	0		
1	Срр	3260	235	24	10	56	15	2	1		LLBMC
		44869	467	310	22	235	90	41	10		

- ESBMC++ took approximately 16 hours and successfully verified 1046 out of 1165 (89%)
- LLBMC took approximately 12 hours and successfully verified 777 out of 1165 (66%)

Experimental Results Sniffer Code

- ESBMC++ was used to verify a commercial application provided by Nokia Institute of Technology (INdT)
- The sniffer code contains 20 classes, 85 methods, and approximately 2839 lines of C++ code
- Five bugs were identified that were related to arithmetic under- and over-flow. The bugs were later confirmed by the developers

Conclusions

- SMT-based verification of C++ programs by focusing on the major features of the language
- Described the implementation of STL containers, inheritance, polymorphism and exception handling
 - in particular, exception specification, which is a feature that is not supported by others BMC tools
- ESBMC++ outperforms LLBMC if we consider the verification of C++ programs
 - with increased accuracy (i.e. exception enabled verification)
- Also, ESBMC++ was able to find undiscovered bugs in the sniffer code, a commercial application