
Lucas Cordeiro
lucascordeiro@ufam.edu.br

Model Checking Embedded Systems

IAS Seminar

Career Summary

• BSc in Electrical Engineering, MSc/PhD in Computer Science

– algorithms, software engineering, formal verification, and
embedded systems

• 39 reviewed publications, including 6 journal papers and 33
workshop/conference contributions

– distinguished paper awards at SAC'08 and ICSE'11, and two
bronze medals at TACAS’12 and TACAS’13

• developer of XMPM, STB225, and ESBMC tools

• research collaborations with Southampton and Stellenbosh

• research funding from Samsung, Nokia, and Royal Society

• research team leader (one PhD, four MSc, and two BSc
students)

– acting as course leader of Electrical Engineering
2

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

Embedded systems are ubiquitous
but their verification becomes more difficult.

3

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

Embedded systems are ubiquitous
but their verification becomes more difficult.

3

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

– communication systems

Embedded systems are ubiquitous
but their verification becomes more difficult.

3

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

– communication systems

– consumer electronics

Embedded systems are ubiquitous
but their verification becomes more difficult.

3

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

– communication systems

– consumer electronics

– medical systems

Embedded systems are ubiquitous
but their verification becomes more difficult.

3

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

– communication systems

– consumer electronics

– medical systems

• provide a number of distinctive characteristics
– usually implemented in DSP, FPGA and µC (mass production)

Embedded systems are ubiquitous
but their verification becomes more difficult.

4

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

– communication systems

– consumer electronics

– medical systems

• provide a number of distinctive characteristics
– usually implemented in DSP, FPGA and µC (mass production)

– functionality determined by software in read-only memory

Embedded systems are ubiquitous
but their verification becomes more difficult.

4

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

– communication systems

– consumer electronics

– medical systems

• provide a number of distinctive characteristics
– usually implemented in DSP, FPGA and µC (mass production)

– functionality determined by software in read-only memory

– multi-core processors with scalable shared memory

Embedded systems are ubiquitous
but their verification becomes more difficult.

4

• embedded system is part of a well-specified larger system
(intelligent product)
– automobiles

– airplanes

– communication systems

– consumer electronics

– medical systems

• provide a number of distinctive characteristics
– usually implemented in DSP, FPGA and µC (mass production)

– functionality determined by software in read-only memory

– multi-core processors with scalable shared memory

– limited amount of energy

Embedded systems are ubiquitous
but their verification becomes more difficult.

4

• verification methodologies for embedded systems

• verification of embedded systems raises additional
challenges

– handle concurrent software

– meet time and energy constraints

– legacy designs (usually written in low-level languages)

• improve coverage and reduce verification time

Verification Challenges

Specification

Embedded Software

Microprocessor
model

Generate test
vectors with
constraints

assert data

(x>0) [1..7]

5

6

Bounded Model Checking (BMC)

Basic Idea: check negation of given property up to given depth

• transition system M unrolled k times
– for programs: loops, arrays, …

• translated into verification condition ψ such that

ψψψψ satisfiable iff ϕϕϕϕ has counterexample of max. depth k

• has been applied successfully to verify (embedded) software

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk

counterexample trace

∨ ∨ ∨ ∨
transition
system

property

bound

• concurrency bugs are tricky to reproduce because they
usually occur under specific thread interleavings

– most common errors: 67% related to atomicity and order
violations, 30% related to deadlock [Lu et al.’08]

BMC of Multi-threaded Software

Thread T1

a1

a2

Thread T2

b1

b2

a1

a2

b1

b2

b1

a2 b2

a2b2

context
switch

7

• concurrency bugs are tricky to reproduce because they
usually occur under specific thread interleavings

– most common errors: 67% related to atomicity and order
violations, 30% related to deadlock [Lu et al.’08]

BMC of Multi-threaded Software

Thread T1

a1

a2

Thread T2

b1

b2

b1

a1

a2 b2

a2b2

a1

a2

b2

context
switch

7

• concurrency bugs are tricky to reproduce because they
usually occur under specific thread interleavings

– most common errors: 67% related to atomicity and order
violations, 30% related to deadlock [Lu et al.’08]

BMC of Multi-threaded Software

Thread T1

a1

a2

Thread T2

b1

b2

b1

a1

a2 b2

a2b2

a1

a2

b2

number of
executions: O(ns)

• hypothesis:
– SAT/SMT solvers produce unsatisfiable

cores that allow removing possible
undesired models of the system

context
switch

concurrency bugs are shallow [Qadeer&Rehof’05]

7

• SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

– object-oriented design and template classes

the standard C++ library complicates the VCs unnecessarily

BMC of SystemC/C++

Standard
Libraries of C++

C++ Programs

g++ compiler
executable

file

8

• SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

– object-oriented design and template classes

the standard C++ library complicates the VCs unnecessarily

BMC of SystemC/C++

Standard
Libraries of C++

C++ Programs

g++ compiler
executable

file

8

template <class _Tp, class _Alloc>void vector<_Tp,

_Alloc>::_M_fill_insert(iterator __position, size_type __n,

const _Tp& __x){

if (__n != 0) {

if (size_type(_M_end_of_storage - _M_finish) >= __n) {

_Tp __x_copy = __x;

const size_type __elems_after = _M_finish - __position;

iterator __old_finish = _M_finish;

if (__elems_after > __n) {

uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);

_M_finish += __n;

copy_backward(__position, __old_finish - __n, __old_finish);

fill(__position, __position + __n, __x_copy);

…

• SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

– object-oriented design and template classes

the standard C++ library complicates the VCs unnecessarily

BMC of SystemC/C++

Operational Model

C++ Programs

8

• SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

– object-oriented design and template classes

the standard C++ library complicates the VCs unnecessarily

BMC of SystemC/C++

Operational Model

C++ Programs

8

• SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

– object-oriented design and template classes

the standard C++ library complicates the VCs unnecessarily

• hypothesis:

– abstract representation of the standard C++ libraries to
conservatively approximate their semantics

BMC of SystemC/C++

Operational Model

C++ Programs

ESBMC++
verification

result

8

• discrete-time systems consist of a mathematical operator
that maps one signal into another signal

fixed-point implementation leads to errors due to the finite word-length

BMC of Discrete-Time Systems

� � = −���	y n − k
�

��
+���	x n − k

�

��

T [.]
X(n) Y(n) = T[x(n)]

overflow

wrap around

9

MAX = 2k-1 – 2-l

MIN = -2k-1

limit cycle

• discrete-time systems consist of a mathematical operator
that maps one signal into another signal

fixed-point implementation leads to errors due to the finite word-length

BMC of Discrete-Time Systems

� � = −���	y n − k
�

��
+���	x n − k

�

��

T [.]
X(n) Y(n) = T[x(n)]

9

time
constraint

�������⟺ (� × �) ≤ !

• discrete-time systems consist of a mathematical operator
that maps one signal into another signal

fixed-point implementation leads to errors due to the finite word-length

• hypothesis:

– discrete-time systems realization has a rigid structure

– simplify the models according to the property to be verified

BMC of Discrete-Time Systems

� � = −���	y n − k
�

��
+���	x n − k

�

��

T [.]
X(n) Y(n) = T[x(n)]

9

Software BMC using ESBMC

• program modelled as state transition system
– state: program counter and program variables
– derived from control-flow graph
– checked safety properties give extra nodes

• program unfolded up to given bounds
– loop iterations
– context switches

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions

int main() {
int a[2], i, x;
if (x==0)

a[i]=0;
else

a[i+2]=1;
assert(a[i+1]==1);

}

crucial

25

Software BMC using ESBMC

• program modelled as state transition system
– state: program counter and program variables
– derived from control-flow graph
– checked safety properties give extra nodes

• program unfolded up to given bounds
– loop iterations
– context switches

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions

• front-end converts unrolled and
optimized program into SSA

int main() {
int a[2], i, x;
if (x==0)

a[i]=0;
else

a[i+2]=1;
assert(a[i+1]==1);

}

crucial
g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0
a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3
t1 = a4 [1+i0] == 1

11

Software BMC using ESBMC

• program modelled as state transition system
– state: program counter and program variables
– derived from control-flow graph
– checked safety properties give extra nodes

• program unfolded up to given bounds
– loop iterations
– context switches

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions

• front-end converts unrolled and
optimized program into SSA

• extraction of constraints C and properties P
– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

int main() {
int a[2], i, x;
if (x==0)

a[i]=0;
else

a[i+2]=1;
assert(a[i+1]==1);

}

crucial

()
()

()

=∧
+=∧

=∧
=∧

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()

=+∧
<+∧≥+∧
<+∧≥+∧

<∧≥

=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

12

Context-Bounded Model Checking in ESBMC

Idea: iteratively generate all possible interleavings and call
the BMC procedure on each interleaving

... combines

• symbolic model checking: on each individual interleaving

• explicit state model checking: explore all interleavings

– bound the number of context switches allowed among
threads

13

execution paths

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

syntax-directed
expansion rules

CS2

interleaving completed, so
call single-threaded BMC

15

Lazy Exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

backtrack to last unexpanded node
and continue

symbolic execution can statically
determine that path is blocked
(encoded in instrumented mutex-op)

17

Lazy Exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ4: treader,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

υ5: ttwoStage,2,
val1=0, val2=0,
m1=1, m2=0,…

υ6: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

18

Lazy Exploration of the Reachability Tree

Achievements

• proposed first SMT-based context-BMC for full C

– verifies single- and multi-threaded software (ASE’09,
distinguished paper award at ICSE’11, TSE’12)

• discrete-time systems (SBrT’13) and C++ (ECBS’13)

– combines plain BMC with k-induction (TACAS’13, SBESC’13)

– found undiscovered bugs related to arithmetic overflow, buffer
overflow, and invalid pointer in standard benchmarks

• confirmed by the benchmark’s creators (NOKIA, NEC, NXP)

– most prominent BMC tool (two bronze medals in the overall
ranking at TACAS’12 and TACAS’13)

• users of our ESBMC model checker

– Airbus, Fraunhofer-Institut (Germany), LIAFA laboratory
(France), University of Tokyo (Japan), Nokia Institute of
Technology (Brazil)

19

