
Context-Bounded Model Checking
with ESBMC 1.17

Lucas Cordeiro, Jeremy Morse,

Denis Nicole, Bernd Fischer

• exploits SMT solvers and its background theories to:

– provide optimized encodings for pointers, bit operations,

unions and arithmetic over- and underflow

– efficient search methods (non-chronological backtracking,

conflict clauses learning)

ESBMC: SMT-based BMC of single- and

multi-threaded software

conflict clauses learning)

• supports verifying multi-threaded software that uses

pthreads threading library

– interleaves only at “visible” instructions

– lazy exploration of the reachability tree

– optional context-bound

• derived from CBMC

Lazy exploration of the Reachability Tree

Idea: iteratively generate all possible interleavings

and call the BMC procedure on each interleaving

... combines

• symbolic model checking: on each individual• symbolic model checking: on each individual

interleaving

• explicit state model checking: explore all

interleavings

Lazy exploration of the Reachability Tree

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

initial state

Lazy exploration of the Reachability Tree

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

initial state
global and local variables

active thread, context bound

Lazy exploration of the Reachability Tree

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

initial state
global and local variables

active thread, context bound

Lazy exploration of the Reachability Tree

CS1

CS2

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

syntax-directed

expansion rules

Lazy exploration of the Reachability Tree

execution paths

CS1

CS2

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

syntax-directed

expansion rules

Lazy exploration of the Reachability Tree

execution paths

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

CS1

CS2

interleaving completed, so

call single-threaded BMC

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

backtrack to last unexpanded node

and continue

Lazy exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

CS1

CS2

and continue

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

backtrack to last unexpanded node

and continue

Lazy exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

CS1

CS2

and continue

symbolic execution can statically

determine that path is blocked
(encoded in instrumented mutex-op)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ4: treader,1,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

Lazy exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

υ5: ttwoStage,2,
val1=0, val2=0,
m1=1, m2=0,…

υ6: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

CS1

CS2

• built-in properties:
– arithmetic under- and overflow

– pointer safety

– array bounds

– division by zero

– memory leaks

ESBMC Verification Support

– memory leaks

– atomicity and order violations

– deadlock

– data race

• user-specified assertions
(__ESBMC_assume, __ESBMC_assert)

• built-in scheduling functions (__ESBMC_atomic_begin,
__ESBMC_atomic_end, __ESBMC_yield)

ESBMC Architecture

ANSI-C

source verification

conditions

SMT

solver
scheduler

IRep

tree
BMC

conditions solver

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver
scheduler

IRep

tree
BMC

scan,
parse, and
type-check

conditions solver

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver
scheduler

single- and
multi-threaded
goto
programs

IRep

tree
BMC

scan,
parse, and
type-check

conditions solver

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver
scheduler

single- and
multi-threaded
goto
programs

IRep

tree
BMC

scan,
parse, and
type-check

conditions solver

deadlock, atomicity
and order violations,
etc…

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver

guide the
symbolic
execution

scheduler

single- and
multi-threaded
goto
programs

IRep

tree
BMC

scan,
parse, and
type-check

conditions solver

deadlock, atomicity
and order violations,
etc…

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver

guide the
symbolic
execution

scheduler

single- and
multi-threaded
goto
programs

IRep

tree
BMC

symbolic
execution
engine

scan,
parse, and
type-check

conditions solver

deadlock, atomicity
and order violations,
etc…

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver

guide the
symbolic
execution

QF formula
generation

scheduler

single- and
multi-threaded
goto
programs

IRep

tree
BMC

symbolic
execution
engine

scan,
parse, and
type-check

conditions solver

deadlock, atomicity
and order violations,
etc…

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver

guide the
symbolic
execution

QF formula
generation

scheduler

single- and
multi-threaded
goto
programs

IRep

tree
BMC

symbolic
execution
engine

scan,
parse, and
type-check

conditions solver

deadlock, atomicity
and order violations,
etc…

check satisfiability
using an SMT solver

reused/extended from CBMC

properties

ESBMC Architecture

ANSI-C

source

scan,

verification

conditions

SMT

solver

guide the
symbolic
execution

QF formula
generation

scheduler

single- and
multi-threaded
goto
programs

IRep

tree
BMC

symbolic
execution
engine

scan,
parse, and
type-check

conditions solver

deadlock, atomicity
and order violations,
etc…

check satisfiability
using an SMT solver

stop the generate-and-
test loop if there is an
errorreused/extended from CBMC

properties

• robust context-bounded model checker for multi-

threaded C code

• lazy exploration is fast for satisfiable instances and

to a lesser extent even for safe programs
– state hashing improves performance (modestly)

Strengths:

• robust context-bounded model checker for multi-

threaded C code

• lazy exploration is fast for satisfiable instances and

to a lesser extent even for safe programs
– state hashing improves performance (modestly)

Strengths:

Weaknesses:Weaknesses:
• scalability (like other BMCs...)

– loop unrolling

– interleavings

• pointer handling and points-to analysis
– exposed by excessive typecasts in the CIL-converted code

– better memory model in progress

