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• exploits SMT solvers and its background theories to:

– provide optimized encodings for pointers, bit operations, 

unions and arithmetic over- and underflow

– efficient search methods (non-chronological backtracking, 

conflict clauses learning)

ESBMC: SMT-based BMC of single- and 

multi-threaded software

conflict clauses learning)

• supports verifying multi-threaded software that uses 

pthreads threading library

– interleaves only at “visible” instructions

– lazy exploration of the reachability tree

– optional context-bound

• derived from CBMC



Lazy exploration of the Reachability Tree

Idea: iteratively generate all possible interleavings

and call the BMC procedure on each interleaving

... combines

• symbolic model checking: on each individual• symbolic model checking: on each individual

interleaving

• explicit state model checking: explore all 

interleavings
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and continue

symbolic execution can statically 

determine that path is blocked
(encoded in instrumented mutex-op)
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• built-in properties:
– arithmetic under- and overflow 

– pointer safety 

– array bounds 

– division by zero

– memory leaks 

ESBMC Verification Support

– memory leaks 

– atomicity and order violations 

– deadlock 

– data race 

• user-specified assertions
(__ESBMC_assume, __ESBMC_assert)

• built-in scheduling functions (__ESBMC_atomic_begin, 
__ESBMC_atomic_end, __ESBMC_yield)
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Weaknesses:Weaknesses:
• scalability (like other BMCs...)

– loop unrolling

– interleavings

• pointer handling and points-to analysis
– exposed by excessive typecasts in the CIL-converted code 

– better memory model in progress


